На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Анализатор импульсов

Маленькое изображениеОднородное магнитное поле часто применяется в «анализаторе», или «спектрометре импульсов» высокоэнергетических частиц. Предположим, что в точке А (фиг. 29.2, а) в однородное магнитное поле влетают заряженные частицы, причем магнитное поле перпендикулярно плоскости рисунка. При этом каждая частица будет лететь по круговой орбите, радиус которой пропорционален ее импульсу. Если все частицы влетают в поле перпендикулярно его краю, то они покидают его на расстоянии х от точки А, пропорциональном их импульсу р. Помещенный в некоторой точке С счетчик будет регистрировать только такие частицы, импульс которых находится rдe-то в интервале Δр величин p=qBx/2.
 
Нет необходимости, разумеется, чтобы перед регистрацией частица поворачивалась на 180°, но такой «180-градусный спектрометр» обладает особым свойством: для него совсем необязательно, чтобы частицы входили под прямым углом к краю поля. На фиг. 29.2, б показаны траектории трех частиц с одинаковым импульсом, но входящих в поле под различными углами. Вы видите, что траектории у них разные, но все они покидают поле очень близко к точке С. В подобных случаях мы говорим о «фокусировке». Преимущество такого способа фокусировки в том, что она позволяет допускать в точку А частицы, летящие под большими углами, хотя обычно, как видно из рисунка, углы эти в какой-то степени ограничены. Большое угловое разрешение обычно означает регистрацию за данный промежуток времени большего числа частиц и сокращения, следовательно, времени измерения.
 
Изменяя магнитное поле, передвигая счетчик вдоль оси x или же покрывая с помощью многих счетчиков целую область по оси х, можно измерить «спектр» падающего пучка [«спектр» импульсов f(p) означает, что число частиц с импульсами в интервале между р и (p+dp) равно f(p)dp]. Такие измерения проводятся, например, при определении распределения по энергиям в β-распаде различных ядер.
 
Имеется еще много других типов импульсных спектрометров, но я расскажу вам только об одном из них, характерном особенно большим разрешением по пространственному углу. В основе его лежат винтовые орбиты в однородном поле, как это показано на фиг. 29.1. Представьте себе цилиндрическую систему координат р, θ, z, причем ось z выбрана по направлению магнитного поля. Если частица испускается из начала координат под углом α к направлению оси z, то она будет двигаться по спиральной линии, описываемой выражением

Маленькое изображение
 

Маленькое изображениевходящие туда параметры а, b и к нетрудно выразить через р, α и магнитное поле В. Если для данного импульса, но разных начальных углов отложить расстояние р от оси как функцию z, то мы получим кривые, подобные сплошным кривым на фиг. 29.3. (Вы помните — ведь это своего рода проекция винтовой траектории.) Когда угол между осью и начальным направлением велик, максимальное значение ρ тоже будет большим, а продольная скорость при этом уменьшается, так что выходящие под различными углами траектории стремятся собраться в своего рода фокус (точка А на рисунке). Если на расстоянии А поставить узкое кольцевое отверстие, то частицы, летящие в некоторой области углов, могут пройти через отверстие и достигнуть оси, где для их регистрации мы приготовим протяженный детектор D. Частицы, вылетающие из начала координат под тем же самым углом, но с большим импульсом, летят по пути, обозначенному нами пунктирной линией, и не могут пройти через отверстие А. Итак, прибор выбирает небольшой интервал импульса. Преимущество такого спектрометра по сравнению с описанным ранее состоит в том, что отверстия А и А′ можно сделать кольцевыми, так что могут быть зарегистрированы частицы в довольно большом телесном угле. Это преимущество особенно важно для слабых источников и при очень точных измерениях, когда необходимо использовать возможно большую долю испущенных источником частиц.

Маленькое изображениеНо за это преимущество приходится расплачиваться, ибо метод требует большого объема однородного магнитного поля, и он практически пригоден только для частиц с небольшой энергией. Если вы помните, один из способов получения однородного поля — это намотать провод на сферу так, чтобы поверхностная плотность тока была пропорциональна синусу угла. Вы можете доказать, что то же самое справедливо и для эллипсоида вращения. Поэтому очень часто такой спектрометр изготовляют, просто наматывая эллипсоидальные витки на деревянный или алюминиевый каркас. Единственное, что при этом требуется,— это чтобы ток на любом интервале оси Δx (фиг. 29.4) был одним и тем же.



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.