На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Сохранение энергии и электромагнитное поле

Нам надо теперь описать сохранение энергии в электромагнитном поле количественно. Для этого нужно выяснить, сколько энергии находится в единице объема, а также какова скорость ее потока. Рассмотрим сначала энергию только электромагнитного поля. Пусть и обозначает плотность энергии поля, т. е. количество энергии в единице объема пространства, а вектор S — поток энергии поля (т. е. количество энергии, прошедшее в единицу времени через единичную поверхность, перпендикулярную к потоку). Тогда, аналогично сохранению заряда (27.1), можно написать «локальный» закон сохранения энергии поля в виде

Маленькое изображение
 

Конечно, этот закон, вообще говоря, не верен; энергия поля не сохраняется. Представьте, что вы находитесь в темной комнате, а затем поворачиваете выключатель. Комната внезапно наполняется светом, т. е. в ней оказывается энергия поля, которой раньше не было. Уравнение (27.2) не составляет полного закона сохранения, ибо энергия одного только поля не сохраняется, а существует еще энергия вещества; сохраняется лишь полная энергия во всем мире. Энергия поля будет изменяться, если оно производит работу над веществом или вещество производит работу над полем.
 
Однако если внутри интересующего нас объема находится вещество, то мы знаем, сколько энергии оно несет в себе: энергия каждой частицы равна m0c2/√1v2/c2. Полная же энергия вещества равна просто сумме энергий всех частиц, а поток ее через поверхность равен просто сумме энергий, переносимой каждой частицей, пересекающей эту поверхность. Но сейчас мы будем иметь дело только с энергией электромагнитного поля. Так что мы должны написать уравнение, которое говорит, что полная энергия поля в данном объеме уменьшается либо в результате вытекания ее из объема, либо потому, что поле передает свою энергию веществу (или приобретает ее, что означает просто отрицательную потерю). Энергия поля в объеме V равна

Маленькое изображение
 

а скорость ее уменьшения равна производной этого интеграла по времени со знаком минус. Поток энергии поля из объема V равен интегралу от нормальной компоненты S по поверхности ∑,  ограничивающей объем V:

Маленькое изображение
 

Таким образом,

Маленькое изображение
 

Раньше мы видели, что над каждой единицей объема вещества поле в единицу времени производит работу Е ·j. [Сила, действующая на частицу, равна F=q(E+vXB), а мощность равна F·v=qE·v. Если в единице объема содержится N частиц, то эта мощность в единице объема равна NqE ·v, a Nqv=j.] Таким образом, величина Е·j должна быть равна энергии, теряемой полем в единице объема за единицу времени. Уравнение (27.3) при этом приобретает вид

Маленькое изображение
 

Вот как выглядит наш закон сохранения энергии в поле. Его можно записать как дифференциальное уравнение, подобное (27.2); для этого второе слагаемое нужно превратить в интеграл по объему, что легко делается с помощью теоремы Гаусса. Поверхностный интеграл от нормальной компоненты S равен интегралу от дивергенции S по объему, ограниченному этой поверхностью, так что уравнение (27.3) эквивалентно следующему:

Маленькое изображение
 

где производную по времени от первого слагаемого мы внесли под интеграл. Поскольку это уравнение верно для любого объема, то интегралы можно отбросить и получить уравнение для энергии электромагнитного поля:

Маленькое изображение
 

Однако это уравнение не даст нам ничего хорошего, пока мы не узнаем, что такое и и S. Быть может, мне следовало бы просто сказать вам, как они выражаются через Е и В, поскольку это единственное, что нам, собственно, нужно. Однако мне очень хочется изложить вам все те рассуждения, которыми в 1884 г. воспользовался Пойнтинг, чтобы получить формулы для S и u, с тем чтобы вы понимали, откуда они взялись. (Для дальнейшей работы, впрочем, вам этот вывод не потребуется.)



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.