На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Диффузия нейтронов. Сферически-симметричный источник в однородной среде

Приведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой. Теперь возьмем другой пример — диффузию нейтронов в материале типа графита. Мы выбрали графит (разновидность чистого углерода), потому что углерод не поглощает медленных нейтронов. Нейтроны путешествуют в нем свободно. Они проходят по прямой в среднем несколько сантиметров, прежде чем рассеются ядром и отклонятся в сторону. Так что если у нас есть большой кусок графита толщиной в несколько метров, то нейтроны, находившиеся сначала в одном месте, будут переходить в другие места. Мы опишем их  усредненное поведение,  т. е. их средний поток.
 
Пусть N(x, у, z)ΔV — число нейтронов в элементе объема ΔV в точке (х, у, z). Движение нейтронов приводит к тому, что одни покидают ΔV, а другие попадают в него. Если в одной области оказывается нейтронов больше, чем в соседней, то оттуда их будет переходить во вторую область больше, чем наоборот; в результате возникнет поток. Повторяя доказательства, приведенные в гл. 43 (вып. 4), можно описать поток вектором потока J. Его компонента Jx есть результирующее число нейтронов, проходящих в единицу времени через единичную площадку, перпендикулярную  оси х.  Мы получим тогда

Маленькое изображение
 

где коэффициент диффузии D дается в терминах средней скорости ν и средней длины свободного пробега l между столкновениями:

Маленькое изображение
 

Скорость, с которой нейтроны проходят через некоторый элемент поверхности da, равна nda (где n, как обычно,— единичный вектор нормали). Результирующий поток из элемента объема тогда равен (пользуясь обычным гауссовым доказательством) v·JdV. Этот поток приводил бы к уменьшению числа нейтронов в ΔV, если нейтроны не генерируются внутри ΔV (с помощью какой-нибудь ядерной реакции). Если в объеме присутствуют источники, производящие S нейтронов в единицу времени в единице объема, то результирующий поток из ΔV будет равен [S—(∂Nl∂t)] ΔV.  Тогда  получаем

Маленькое изображение
 

Комбинируя (12.21) и (12.20), получаем уравнение диффузии нейтронов

Маленькое изображение
 

Маленькое изображениеВ статическом случае, когда ∂N/∂t =0, мы снова имеем уравнение (12.4)! Мы можем воспользоваться нашими знаниями в электростатике для решения задач по диффузии нейтронов. Давайте же решим какую-нибудь задачу. (Пожалуй, вы недоумеваете: зачем решать новую задачу, если мы уже решили все задачи в электростатике? На этот раз мы можем решить быстрее именно потому, что электростатические задачи действительно уже решены!)
 
Пусть имеется блок материала, в котором нейтроны (скажем, за счет деления урана) рождаются равномерно в сферической области радиусом а (фиг. 12.7). Мы хотели бы узнать, чему равна плотность нейтронов повсюду? Насколько однородна плотность нейтронов в области, где они рождаются? Чему равно отношение нейтронной плотности в центре к нейтронной плотности на поверхности области рождения? Ответы найти легко. Плотность нейтронов в источнике So стоит вместо плотности зарядов ρ, поэтому наша задача такая же, как задача об однородно заряженной сфере. Найти N— все равно что найти потенциал φ. Мы уже нашли поля внутри и вне однородно заряженной сферы; для получения потенциала мы можем их проинтегрировать. Вне сферы потенциал равен Q/4πε0r, где полный  заряд  Q дается  отношением 4πа3ρ/3. Следовательно,

Маленькое изображение
 

Для внутренних точек вклад в поле дают только заряды Q(r), находящиеся внутри сферы радиусом r;  Q(r) =4πr3ρ/3, следовательно,

Маленькое изображение
 

Поле  растет линейно с r. Интегрируя Е, получаем φ:

Маленькое изображение
 

На расстоянии радиуса а φвнешн  должен совпадать с φвнутр, поэтому постоянная должна быть равна ρа2/2ε0. (Мы предполагаем, что потенциал φ равен нулю на больших расстояниях от источника, а это для нейтронов будет отвечать обращению N в нуль.)  Следовательно,

Маленькое изображение
 

Теперь мы сразу же найдем плотность нейтронов в нашей диффузионной задаче

Маленькое изображение
 

На фиг 12.7 представлена зависимость N от r.
 
Чему же теперь равно отношение плотности в центре к плотности на краю? В центре (r=0) оно пропорционально За2/2, а на краю (r=а) пропорционально 2а2/2; поэтому отношение плотностей равно 3/2. Однородный источник не дает однородной плотности нейтронов. Как видите, наши познания в электростатике дают хорошую затравку для изучения физики ядерных реакторов.
 
Диффузия играет большую роль во многих физических обстоятельствах. Движение ионов через жидкость или электронов черев полупроводник подчиняется все тому же уравнению. Мы снова и снова приходим к одним и тем же уравнениям.



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.