На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Электрические поля в пустотах диэлектрика

Теперь мы переходим к интересному, но сложному вопросу о диэлектрической проницаемости плотных веществ. Возьмем, например, жидкий гелий, или жидкий аргон, или еще какое-нибудь неполярное вещество. Мы по-прежнему ожидаем, что у них есть электронная поляризуемость. Но в плотных средах значение Р может быть велико, поэтому в поле, действующее на отдельный атом, вклад будет давать поляризация атомов, находящихся по соседству. Возникает вопрос, чему равно электрическое поле, действующее на отдельный атом?
 
Вообразите, что между пластинами конденсатора находится жидкость. Если пластины заряжены, они создадут в жидкости электрическое поле. Но каждый атом имеет заряды, и полное поле Е есть сумма обоих этих вкладов. Это истинное электрическое поле в жидкости меняется очень-очень быстро от точки к точке. Оно чрезвычайно велико внутри атомов, особенно вблизи ядра, и сравнительно мало между атомами. Разность потенциалов между пластинами есть интеграл от этого полного поля. Если мы пренебрежем всеми быстрыми изменениями, то можем представить себе некое среднее электрическое поле Е, равное как раз V/d. (Именно это поле мы использовали в предыдущей главе.) Это поле мы должны себе представлять как среднее по пространству, содержащему много атомов.

Маленькое изображениеВы можете подумать, что «средний» атом в «среднем» положении почувствует именно это среднее поле. Но все не так просто, и в этом можно убедиться, представив, что в диэлектрике имеются отверстия разной формы. Предположим, что мы вырезали в поляризованном диэлектрике щель, ориентированную параллельно полю (фиг. 11.5, а). Поскольку мы знаем, что vxE = 0, то линейный интеграл от Е вдоль кривой Г, направленной так, как показано на фиг. 11.5, б, должен быть равен нулю. Поле внутри щели должно давать такой вклад, который в точности погасит вклад от поля вне щели. Поэтому поле Ео в центре длинной тонкой щели равно Е, т.е. среднему электрическому полю, найденному в диэлектрике.
 
Рассмотрим теперь другую щель, повернутую своей широкой стороной перпендикулярно Е (фиг. 11.5, в). В этом случае поле Ео в щели не совпадает с Е, потому что на стенках щели возникают поляризационные заряды. Применив закон Гаусса к поверхности S, изображенной на фиг. 11.5, г, мы находим, что поле Ео внутри щели дается выражением

Маленькое изображение
 

где Е, как и раньше,— электрическое поле в диэлектрике. (Гауссова поверхность охватывает поверхностный поляризационный заряд σпол = Р.) Мы отмечали в гл. 10, что ε0Е + Р часто обозначают через D, поэтому εоEо = D0  равно величине D  в диэлектрике.
 
В ранний период истории физики, когда считалось очень важным определять каждую величину прямым экспериментом, физики были очень довольны, обнаружив, что они могут определить то, что понимают под Е и D в диэлектрике, не ползая в промежутках между атомами. Среднее поле Е численно равно полю Ео, измеренному в щели, параллельной полю. А поле D могло быть измерено с помощью Е0, найденной в щели, перпендикулярной полю. Но никто эти поля никогда не измерял (таким способом во всяком случае), так что это одна из многих бесплодных проблем.
 
 
В большинстве жидкостей, не слишком сложных по своему строению, каждый атом в среднем так окружен другими атомами, что можно с хорошей точностью считать его находящимся в сферической полости. И тогда мы спросим: «Чему равно поле в сферической полости?» Мы замечаем, что вырезание сферической дырки в однородном поляризованном диэлектрике равносильно отбрасыванию шарика из поляризованного материала, так что мы можем ответить на этот вопрос. (Мы должны представить себе, что поляризация была «заморожена» до того, как мы вырезали дырку.) Однако в силу принципа суперпозиции поле внутри диэлектрика, до того как оттуда был вынут шарик, есть сумма полей от всех зарядов вне объема шарика плюс полей от зарядов внутри поляризованного шарика. Следовательно, если поле внутри однородного диэлектрика мы назовем Е, то можно  записать

Маленькое изображение
 

где Eдырка — поле в дырке, а Eшарик — поле в однородно поляризованном шарике (фиг. 11.6).

Маленькое изображение
 

Маленькое изображениеПоле однородно поляризованного шарика показано на фиг. 11.7. Электрическое поле внутри шарика однородно и равно

Маленькое изображение
 

С помощью (11.23) получаем

Маленькое изображение
 

Поле в сферической полости больше среднего поля на величину Р/3ε0. (Сферическая дырка дает поле, находящееся на 1/3 пути от поля параллельной щели к полю перпендикулярной щели.)



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.