На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Диэлектрическая проницаемость

Сейчас мы разберем еще одно характерное свойство материи, возникающее под влиянием электрического поля. В одной из предыдущих глав мы рассмотрели поведение проводников, в которых заряды под влиянием электрического поля свободно текут в такие участки, что поле внутри проводника обращается в нуль. Теперь мы будем говорить об изоляторах, т. е. таких материалах, которые не проводят электричество. Сначала можно было бы подумать, что в них вообще ничего не происходит. Но Фарадей с помощью простого электроскопа и конденсатора, состоящего из двух параллельных пластин, обнаружил, что это не так. Его опыт показал, что если между пластинами поместить изолятор, то емкость такого конденсатора увеличится. Когда изолятор целиком заполняет пространство между пластинами, емкость возрастает в х раз, причем х зависит только от свойств изолирующего материала. Изолирующие материалы называют также диэлектриками; тогда множитель х характеризует свойства диэлектрика и называется диэлектрической проницаемостью. Диэлектрическая проницаемость вакуума, конечно, равна единице.
 
Наша задача теперь состоит в том, чтобы объяснить, почему вообще возникает электрический эффект, раз изоляторы фактически являются изоляторами и не проводят электричества. Начнем с экспериментального факта, что емкость увеличивается, и попытаемся разобраться, что же там может происходить. Рассмотрим плоский конденсатор, на проводящих пластинах которого имеются заряды, скажем, на верхней пластине отрицательные, а на нижней — положительные. Пусть расстояние между пластинами равно d, а площадь каждой пластины А. Как мы показали раньше, емкость равна

Маленькое изображение
 

а заряд и потенциал конденсатора связаны соотношением

Маленькое изображение
 

Далее, экспериментальный факт состоит в том, что если мы положим между пластинами кусок изолирующего материала, например стекла или плексигласа, то емкость возрастет. Это, разумеется, означает, что при том же заряде потенциал стал меньше. Но разность потенциалов есть интеграл от электрического поля, взятый поперек конденсатора; отсюда мы должны заключить, что электрическое поле внутри конденсатора стало меньше, хотя заряды пластин и не изменились.

Маленькое изображениеНо как может это быть? Нам известна теорема Гаусса, которая утверждает, что полный поток электрического поля прямо связан с находящимся внутри объема электрическим зарядом. Рассмотрим входящую в теорему Гаусса поверхность S, изображенную пунктиром на фиг. 10.1. Поскольку электрическое поле в присутствии диэлектрика уменьшается, мы заключаем, что полный заряд внутри поверхности должен теперь быть меньше, чем до внесения изолятора. Остается сделать единственный вывод, что на поверхности диэлектрика должны находиться положительные заряды. Раз поле уменьшилось, но все же не обратилось в нуль, значит, этот положительный заряд меньше отрицательного заряда в проводнике. Итак, явление это можно объяснить, если мы поймем, почему на одной поверхности диэлектрика, помещенного в электрическое поле, индуцируется положительный заряд, а на другой — отрицательный.

Маленькое изображениеВсе было бы понятно, если бы речь шла о проводнике. Пусть у нас был бы, например, конденсатор, расстояние между пластинами которого равно d, и мы вставили бы между этими пластинами незаряженный проводник толщиной b (фиг. 10.2). Электрическое поле индуцирует положительный заряд на верхней поверхности и отрицательный заряд на нижней поверхности, так что в результате поле внутри проводника погашается. Во всех остальных местах поле такое же, какое было без проводника, поэтому оно равно поверхностной плотности зарядов, деленной на ε0; но расстояние, по которому мы должны интегрировать, чтобы получить напряжение (разность потенциалов), стало меньше.
 
 
Напряжение равно

Маленькое изображение
 

Окончательное выражение для емкости похоже на (10.1), где d нужно заменить разностью (db):

Маленькое изображение
 

Маленькое изображениеЕмкость  увеличилась в некоторое число раз,  зависящее от b/d, доли объема,  занятого проводником.
 
Отсюда мы получаем модель того, что происходит в диэлектриках: внутри материала имеется множество мелких проводящих слоев. Беда такой модели состоит в том, что в ней должна иметься выделенная ось — перпендикуляр ко всем слоям, а у большинства диэлектриков такой оси нет. Эту трудность, однако, можно устранить, предположив, что все изолирующие материалы содержат маленькие проводящие шарики, отделенные одна от другой изолятором (фиг. 10.3). Появление диэлектрической проницаемости тогда объясняется действием зарядов, индуцируемых в каждом шарике. В этом и состоит одна из самых первых физических моделей диэлектриков, предложенная для объяснения явления, которое наблюдал Фарадей. Точнее, предполагалось, что каждый атом материала есть идеальный проводник, изолированный от остальных атомов. Диэлектрическая проницаемость х тогда должна была определяться долей того объема, который занимают проводящие шарики. Теперь, однако, пользуются другой моделью.



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.