На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Ускорение

Следующий шаг на пути к уравнениям движения — это введение величины, которая связана с изменением скорости движения. Естественно спросить: а как изменяется скорость движения? В предыдущих главах мы рассматривали случай, когда действующая сила приводила к изменению скорости. Бывают легковые машины, которые набирают с места за 10 сек скорость 90 км/час. Зная это, мы можем определить, как изменяется скорость, но только в среднем. Займемся следующим более сложным вопросом: как узнать быстроту изменения скорости. Другими словами, на сколько метров в секунду изменяется скорость за 1 сек. Мы уже установили, что скорость падающего тела изменяется со временем по формуле v=9,8t (см. табл. 8.4), а теперь хотим выяснить, насколько она изменяется за 1 сек. Эта величина называется ускорением.

Таким образом, ускорение определяется как быстрота изменения скорости. Всем сказанным ранее мы уже достаточно подготовлены к тому, чтобы сразу записать ускорение в виде производной от скорости, точно так же как скорость записывается в виде производной от расстояния. Если теперь продифференцировать формулу v=9,8 t, то получим ускорение падающего тела

Маленькое изображение
 

(При дифференцировании этого выражения использовался результат, полученный нами раньше. Мы видели, что производная от Bt равна просто В (постоянной). Если же выбрать эту постоянную равной 9,8, то сразу находим, что производная от 9,8 t равна 9,8.) Это означает, что скорость падающего тела постоянно возрастает на 9,8 м/сек за каждую секунду. Этот же результат можно получить и из табл. 8.4. Как видите, в случав падающего тела все получается довольно просто, но ускорение, вообще говоря, непостоянно. Оно получилось постоянным только потому, что постоянна сила, действующая на падающее тело, а по закону Ньютона ускорение должно быть пропорционально силе.

В качестве следующего примера найдем ускорение в той задаче, с которой мы уже имели дело при изучении скорости:
s = At3 + Bt + C.
Для скорости v = ds/dt мы получили формулу
v = 3At2 + B.

Так как ускорение — это производная скорости по времени, то для того, чтобы найти его значение, нужно продифференцировать эту формулу. Вспомним теперь одно из правил табл. 8.3, а именно что производная суммы равна сумме производных. Чтобы продифференцировать первый из этих членов, мы не будем проделывать всю длинную процедуру, которую делали раньше, а просто напомним, что такой квадратичный член встречался нам при дифференцировании функции 5t2, причем в результате коэффициент удваивался, a t2 превращалось в t. Вы можете сами убедиться в том, что то же самое произойдет и сейчас. Таким образом, производная от 3At2 будет равна 6At. Перейдем теперь к дифференцированию второго слагаемого. По одному из правил табл. 8.3 производная от постоянной будет нулем, следовательно, этот член не даст в ускорение никакого вклада. Окончательный результат: a=dv/dt = 6At.

Выведем еще две полезные формулы, которые получаются интегрированием. Если тело из состояния покоя движется с постоянным ускорением g, то его скорость v в любой момент времени t будет равна
v = gt,
а расстояние, пройденное им к этому моменту времени,
s = 1/2 * gt2.

Заметим еще, что поскольку скорость — это ds/dt, а ускорение — производная скорости по времени, то можно написать

Маленькое изображение
 

Так что теперь мы знаем, как записывается вторая производная.

Существует, конечно, и обратная связь между ускорением и расстоянием, которая просто следует из того, что a=dv/dt. Поскольку расстояние является интегралом от скорости, то оно может быть найдено двойным интегрированием ускорения.

Все предыдущее рассмотрение было посвящено движению в одном измерении, а теперь мы коротко остановимся на движении в пространстве трех измерений. Рассмотрим движение частицы Р в трехмерном пространстве. Эта глава началась с обсуждения одномерного движения легковой машины, а именно с вопроса, на каком расстоянии от начала движения находится машина в различные моменты времени. Затем мы обсуждали связь между скоростью и изменением расстояния со временем и связь между ускорением и изменением скорости. Давайте в той же последовательности разберем движение в трех измерениях. Проще, однако, начать с более наглядного двумерного случая, а уж потом обобщить его на случай трех измерений. Нарисуем две пересекающиеся под прямым углом линии (оси координат) и будем задавать положение частицы в любой момент времени расстояниями от нее до каждой из осей. Таким образом, положение частицы задается двумя числами (координатами) х и у, каждое из которых является соответственно расстоянием до оси у и до оси х (фиг. 8.3). Теперь мы можем описать движение, составляя, например, таблицу, в которой эти две координаты заданы как функции времени. (Обобщение на трехмерный случай требует введения еще одной оси, перпендикулярнои двум первым, и измерения еще одной координаты z. Однако теперь расстояния берутся не до осей, а до координатных плоскостей.) Как определить скорость частицы? Для этого мы сначала найдем составляющие скорости по каждому направлению, или ее компоненты. Горизонтальная составляющая скорости, или x-компонента, будет равна производной по времени от координаты х, т. е.

Маленькое изображение
 

а вертикальная составляющая, или y-компонента, равна

Маленькое изображение
 

В случае трех измерений необходимо еще добавить

Маленькое изображение
 

Маленькое изображениеКак, зная компоненты скорости, определить полную скорость в направлении движения? Рассмотрим в двумерном случае два последовательных положения частицы, разделенных коротким интервалом времени Δt= t2—t1 и расстоянием Δs. Из фиг. 8.3 видно, что

Маленькое изображение
 

(Значок ≈ соответствует выражению «приблизительно равно».) Средняя скорость в течение интервала Δt получается простым делением: Δs/Δt- Чтобы найти точную скорость в момент t, нужно, как это уже делалось в начале главы, устремить Δt к нулю. В результате оказывается, что

Маленькое изображение
 

В трехмерном случае точно таким же способом можно получить

Маленькое изображение
 

Ускорения мы определяем таким же образом, как и скорости: x-компонента ускорения ах определяется как производная от x-компоненты скорости vx (т. е. ax—d2x/dt2 — вторая производная по времени) и т. д.

Давайте рассмотрим еще один интересный пример смешанного движения на плоскости. Пусть шарик движется в горизонтальном направлении с постоянной скоростью и и в то же время падает вертикально вниз с постоянным ускорением g. Что это за движение? Так как vx = dx/dt = u и, следовательно, скорость vx постоянна, то

Маленькое изображение
 

а поскольку ускорение движения вниз постоянно и равно —g, то координата у падающего шара дается формулой

Маленькое изображение
 

Какую же кривую описывает наш шарик, т. е. какая связь между координатами х и у? Из уравнения (8.18), согласно (8.17), можно исключить время, поскольку t = x/u, после чего находим

Маленькое изображение
 

Маленькое изображениеЭту связь между координатами х и у можно рассматривать как уравнение траектории движения шарика. Если изобразить ее графически, то получим кривую, которая называется параболой (фиг. 8.4). Так что любое свободно падающее тело, будучи брошенным в некотором направлении, движется по параболе.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.