Главная >> Фейнмановские лекции по физике >> Том 5 >> Глава 5. Применения закона Гаусса Однородно заряженный шар; заряженная сфера
В гл. 4 мы уже применяли закон Гаусса, когда должны были найти поле вне однородно заряженной шаровой области. Тот же метод может дать нам и поле в точках внутри шара. Этот расчет, например, может быть использован для получения хорошего приближения к полю внутри атомного ядра. Вопреки тому, что протоны в ядре взаимно отталкиваются, они из-за сильного ядерного притяжения распределены по всему ядру почти однородно.
Пусть у нас имеется сфера радиуса R, однородно наполненная зарядами. Пусть заряд в единице объема равен ρ. Снова, используя соображения симметрии, можно предположить, что поле радиально и в точках, равноудаленных от центра, по величине одинаково. Чтоб определить поле в точке на расстоянии r от центра, представим сферическую гауссову поверхность радиуса r (r<R), как показано на фиг. 5.8. Поток из нее равен
Заряд внутри нее равен внутреннему объему, умноженному на ρ, т. е.
Применяя закон Гаусса, получаем величину поля
Вы видите, что при r=R эта формула дает правильный результат. Электрическое поле пропорционально расстоянию от центра и направлено по радиусу наружу.
Аргументы, которые мы только что приводили для однородно заряженного шара, можно применить и к заряженной сфере. Опять предполагая радиальность и сферическую симметрию поля, из закона Гаусса немедленно получаем, что поле вне сферы во всем подобно полю точечного заряда, поле же внутри сферы — нуль (если мы проведем гауссову поверхность внутри сферы, то внутри нее зарядов не окажется).
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|