На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Волны в пространстве трех измерений

Мы заканчиваем наше обсуждение волн несколькими общими замечаниями о волновом уравнении. Эти замечания, призванные дать нам картину того, чем нам предстоит заниматься и будущем, вовсе не претендуют на то, чтобы вы поняли их сразу; они должны скорее показать, как будут выглядеть все эти вещи, когда вы несколько больше познакомитесь с волнами. Мы уже записали уравнение для распространения звука в одном измерении:

Маленькое изображение
 

здесь с — скорость того, что мы назвали волнами. Если речь идет о звуке, то это скорость звука, если о свете — то это скорость света. Мы показали, что для звуковой волны перемещения частиц должны распространяться с некоторой скоростью. Но избыточное давление, как и избыточная плотность, тоже распространяется с некоторой скоростью. Таким образом, можно ожидать, что и давление будет удовлетворять этому же уравнению. Так оно и есть на самом деле, однако докажите это самостоятельно. Указание: р„ пропорционально скорости изменения χ с расстоянием х. Следовательно, продифференцировав волновое уравнение по х, мы немедленно обнаружим, что дχ/дх удовлетворяет тому же самому уравнению. Другими словами, ра удовлетворяет тому же самому уравнению. Но Ри пропорционально ρu, поэтому и Рu удовлетворяет тому же самому уравнению. Таким образом, и давление, и перемещение — все описывается одним и тем же уравнением.
 
Обычно волновое уравнение для звука записывается через давление, а не через перемещение. Это проще, потому что давление — скаляр и не имеет никакого направления. Но перемещение есть вектор, и поэтому лучше иметь дело с давлением.
 
Следующий вопрос, который нам предстоит обсудить, относится к волновому уравнению в трехмерном пространстве. Мы знаем, что звуковая волна в одномерном пространстве описывается решением ехр[i tkx)], где ω=kcs. Кроме того, нам известно, что в трех измерениях волна описывается выражением exp[i(ωt kxx kyy kzz)], и в этом случае ω2 = k2сs2 [сокращенная запись (к2x+к2y+к2z2s]. Сейчас мы хотим просто угадать вид волнового уравнения в трехмерном пространстве. Естественно, что в случае звука это уравнение можно получить с помощью тех же самых динамических соображений, но уже в трехмерном пространстве. Однако мы не будем сейчас делать этого, а просто напишем ответ: уравнение для давления или перемещения (или чего-то другого) имеет вид

Маленькое изображение
 

правильность этого уравнения может быть легко проверена подстановкой в него функции ехр[i(ωt—kr)]. Ясно, что при каждом дифференцировании по х происходит умножение на — ikx. Если мы дифференцируем дважды, то это эквивалентно умножению на —k2x, так что для такой волны первый член получится равным —k2xРu. Точно таким же образом второй член окажется равным —k2yРu, а третий — равным —k2zРu. С правой же стороны мы получим —ω2/c2sРu. Если мы вынесем за скобку Рu и изменим знаки всех членов, то увидим, что между k и ω как раз получится желаемое соотношение.
 
Возвращаясь назад, мы должны прийти к основному уравнению, соответствующему дисперсионному соотношению (48.22) для квантовомеханической волны. Если φ — амплитуда нахождения частицы в момент t   в точке с координатами х, у и z, то основное уравнение квантовой механики для свободной частицы имеет вид

Маленькое изображение
 

Прежде всего заметим, что релятивистский характер этого уравнения гарантируется появлением координат х, у, z и времени t в такой удачной комбинации, что она автоматически учитывает принцип относительности. Кроме того, это уравнение волновое. Если подставить в него плоскую волну, то как следствие мы получим равенство —k22/c2=m2c2/h2, которое должно выполняться в квантовой механике. В этом волновом уравнении содержится еще одна фундаментальная вещь: любая суперпозиция волн также будет его решением. Таким образом, это уравнение опирается на всю квантовую механику и всю теорию относительности, которая уже обсуждалась нами до сих пор, по крайней мере когда мы имели дело с единственной частицей в пустом пространстве без всяких потенциалов и воздействующих на нее сил!



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.