На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Эффект Допплера

Маленькое изображениеРассмотрим теперь ряд других эффектов, связанных с движением источника. Пусть источник представляет собой покоящийся атом, колеблющийся со своей обычной частотой ω0. Частота наблюдаемого света тогда будет равна ω0. Но возьмем другой пример: пусть такой же атом колеблется с частотой ω1 и в то же время весь атом, весь осциллятор как целое движется со скоростью ν по направлению к наблюдателю. Тогда истинное движение в пространстве будет таким, как изображено на фиг. 34.10,а. Используем наш обычный прием и добавим сτ, т. е. сместим всю кривую назад и получим колебания, представленные на фиг. 34.10,6. За промежуток времени τ осциллятор проходит расстояние ντ, а на графике с осями х′ и у′ соответствующее расстояние равно (с—ν)τ. Таким образом, число колебаний с частотой ω1 которое укладывалось в интервал Δτ, на новом чертеже укладывается теперь уже в интервал Δτ = (1—ν/с) Δτ; осцилляции сжимаются, и, когда новая кривая будет двигаться мимо нас со скоростью с, мы увидим свет более высокой частоты, увеличенной за счет фактора сокращения (1—ν/c). Итак, наблюдаемая частота равна

Маленькое изображение
 

Можно, конечно, объяснить этот эффект и другими способами. Пусть, например, тот же атом испускает не синусоидальную волну, а короткие импульсы (пип, пип, пип, пип) с некоторой частотой ω1. С какой частотой мы будем их воспринимать? Первый импульс к нам придет спустя определенное время, а второй импульс придет уже через более короткое время, потому что атом за это время успел к нам приблизиться. Следовательно, промежуток времени между сигналами «пип» сократился за счет движения атома. Анализируя эту картину с геометрической точки зрения, мы придем к выводу, что частота импульсов увеличивается в 1/(1—ν/c) раз.

Будет ли наблюдаться частота ω = ω0/(1 — ν/c), если атом с собственной частотой ω0 движется со скоростью ν к наблюдателю? Нет. Нам хорошо известно, что собственная частота движущегося атома ω1 и частота покоящегося атома ω0 — не одно и то же из-за релятивистского замедления хода времени. Так что если ω0 — собственная частота покоящегося атома, то частота движущегося атома будет равна

Маленькое изображение
 

Поэтому наблюдаемая частота ω окончательно равна

Маленькое изображение
 

Изменение частоты, возникающее в таком случае, называется эффектом Допплера: если излучающий объект движется на нас, излучаемый им свет кажется более синим, а если он движется от нас, свет становится более красным.

Приведем еще два других вывода этого интересного и важного результата. Пусть теперь покоящийся источник излучает с частотой ω0, а наблюдатель движется со скоростью ν к источнику. За время t наблюдатель сдвинется на новое расстояние νt от того места, где он был при t = 0. Сколько радиан фазы пройдет перед наблюдателем? Прежде всего, как и мимо любой фиксированной точки, пройдет ω0t, а также некоторая добавка за счет движения источника, а именно νtk0 (это есть число радиан на метр, умноженное на расстояние).

Отсюда число радиан за единицу времени, или наблюдаемая частота, равно ω1 = ω0 +k0ν. Весь этот вывод был произведен с точки зрения покоящегося наблюдателя; посмотрим, что увидит движущийся наблюдатель. Здесь мы снова должны учесть разницу в течении времени для наблюдателя в покое и движении, а это значит, что мы должны разделить результат на √1-ν2/c2. Итак, пусть k0 есть волновое число (количество радиан на метр в направлении движения), а ω0 — частота; тогда частота, регистрируемая движущимся наблюдателем, равна

Маленькое изображение
 

Для света мы знаем, что k0 = ω0/с. Следовательно, в рассматриваемом примере искомое соотношение имеет вид

Маленькое изображение
 

и, казалось бы, не похоже на (34.12)!

Отличается ли частота, наблюдаемая при нашем движении к источнику, от частоты, наблюдаемой при движении источника к нам? Конечно, нет! Теория относительности утверждает, что обе частоты должны быть в точности равны. Если бы мы были достаточно математически подготовлены, то могли бы убедиться, что оба математических выражения в точности равны! В действительности требование равенства обоих выражений часто используется для вывода релятивистского замедления времени, потому что без квадратных корней равенство сразу нарушается.

Раз уж мы начали говорить о теории относительности, приведем еще и третий способ доказательства, который покажется, пожалуй, более общим. (Суть дела остается прежней, ибо не играет роли, каким способом получен результат!) В теории относительности имеется связь между положением в пространстве и временем, определяемым одним наблюдателем, и положением и временем, определяемым другим наблюдателем, движущимся относительно первого. Мы уже выписывали эти соотношения (гл. 16). Они представляют собой преобразования Лоренца, прямые и обратные:

Маленькое изображение
 

Для неподвижного наблюдателя волна имеет вид cos(ωt—kx); все гребни, впадины и нули описываются этой формой. А как будет выглядеть та же самая физическая волна для движущегося наблюдателя? Там, где поле равно нулю, любой наблюдатель при измерении получит нуль; это есть релятивистский инвариант. Следовательно, форма волны не меняется, нужно только написать ее в системе отсчета движущегося наблюдателя:

Маленькое изображение
 

Произведя перегруппировку членов, получим

Маленькое изображение
 

Мы снова получим волну в виде косинуса с частотой ω′ в качестве коэффициента при t′ и некоторой другой константой k′ — коэффициентом при х′. Назовем k′ (или число колебаний на 1 м) волновым числом для второго наблюдателя. Таким образом, движущийся наблюдатель отметит другую частоту и другое волновое число, определяемые формулами

Маленькое изображение
 

Маленькое изображение
 

Легко видеть, что (34.17) совпадает с формулой (34.13), полученной нами на основании чисто физических рассуждений.



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.