На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Движущиеся источники

В этой главе мы расскажем еще о ряде эффектов, связанных с излучением, и на этом закончим изложение классической теории света. Проведенный нами в предыдущих главах анализ световых явлений был достаточно полным и подробным. Однако мы не коснулись одного важного в приложениях процесса электромагнитного излучения — мы не исследовали поведения радиоволн в ящике с отражающими стенками размером порядка длины волны или радиоволн, пропускаемых через длинную трубу. Явления, возникающие в так называемых полых резонаторах и волноводах, мы обсудим позднее, причем прежде мы их проиллюстрируем на другом физическом примере — на примере звука. А в остальном изучение классической теории света заканчивается этой главой.

Для всех эффектов, о которых здесь пойдет речь, характерно то, что они связаны с движением источника. Мы не будем больше предполагать, что смещение источника незначительно и его движение происходит с относительно малой скоростью возле фиксированной точки.

Вспомним, что, согласно основным законам электродинамики, электрической поле на больших расстояниях от движущегося заряда дается формулой

Маленькое изображение
 

определяющей величиной здесь является вторая производная единичного вектора еR′ , направленного к кажущемуся положению заряда. Единичный вектор характеризует положение заряда, конечно, не в тот же момент времени, а то место, где находился бы заряд, если учесть конечную скорость передачи информации от заряда к наблюдателю.

Вместе с электрическим полем возникает магнитное поле, направленное всегда перпендикулярно электрическому и кажущемуся положению заряда. Оно дается формулой

Маленькое изображение
 

Мы рассматривали до сих пор случай нерелятивистских скоростей, когда движением в направлении источника можно было пренебречь. Обратимся теперь к общему случаю произвольных скоростей и посмотрим, какие эффекты возникают в этих условиях. Итак, пусть движение происходит с любой скоростью, но расстояние от детектора до источника по-прежнему велико.

Маленькое изображениеВ гл. 28 мы уже говорили, что в производную d2еR /dt2 входит только изменение направления еR. Пусть заряд находится в точке с координатами (х, y, z) и ось z лежит вдоль линии наблюдения (фиг. 34.1). В данный момент времени τ координаты заряда есть х(τ), у(τ) и z(τ). Расстояние R с большой точностью равно R(τ) = R0 + z(τ) Направление вектора еR зависит главным образом от x и у и почти совсем не зависит от z. Поперечные компоненты единичного вектора равны x/R и y/R; дифференцируя их, мы получаем члены, содержащие R2 в знаменателе:

Маленькое изображение
 

Таким образом, на достаточно больших расстояниях существенны только члены с производными х и у. Отсюда

Маленькое изображение
 

где R0 примерно равно расстоянию до заряда q; определим его как расстояние ОР до начала координат (х, у, z). Итак, электрическое поле равно константе, умноженной на очень простую величину — производную координат х и у по t. (Математически можно назвать их поперечными компонентами вектора положения заряда r, но ясности от этого не прибавится.)

Конечно, нужно всегда помнить, что координаты берутся не в момент наблюдения, а с учетом запаздывания. В данном случае запаздывание зависит и от z(τ). Чему равно время запаздывания? Обозначим время наблюдения через t (это время в точке наблюдения Р), тогда время τ, которое в точке А соответствует времени t, не будет совпадать с t, а отстает от него на промежуток времени, необходимый свету, чтобы пройти все расстояние от заряда до точки наблюдения. В первом приближении время запаздывания равно R0/c, т. е. постоянной (что неинтересно), а в следующем приближении должно зависеть от z-координаты положения заряда в момент τ, потому что для заряда q, сдвинутого немного назад, запаздывание увеличивается. Этим эффектом мы раньше пренебрегали, если теперь учесть его, то мы получим формулу, пригодную для любых скоростей.

Нам остается выбрать определенное значение t, вычислить с его помощью τ и найти х и у в момент времени τ. Запаздывающие значения х и у обозначим через х′ и y′, вторые производные от них определяют поле. Итак, τ определяется из уравнений

Маленькое изображение
 

И

Маленькое изображение
 

Эти уравнения довольно сложны, но их решение легко получить геометрическим путем. Чертеж даст вам возможность качественно почувствовать, как возникают соотношения, хотя для вывода точных результатов понадобится преодолеть еще немало математических сложностей.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.