На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Энергия световой волны

Как мы видели, мнимая часть показателя преломления характеризует поглощение. Попробуем теперь вычислить энергию, переносимую световой волной. Мы высказали соображения в пользу того, что энергия световой волны пропорциональна Е2, среднему по времени от квадрата электрического поля волны. Ослабление электрического поля за счет поглощения волны должно приводить к потере энергии, переходящей в какое-то трение электронов и в конечном счете, как нетрудно догадаться, в тепло.

Взяв часть световой волны, падающую на единичную площадку, например на квадратный сантиметр поверхности нашей пластинки на фиг. 31.1, можно записать энергетический баланс в следующей форме (мы предполагаем, что энергия сохраняется!):

Маленькое изображение
 

Вместо первого члена можно написать α Es2, где α — коэффициент пропорциональности, связывающий среднее значение Е2 с энергией, переносимой волной. Во втором члене необходимо включить поле излучения атомов среды, т.е. мы должны записать α (Es + Еа)2 или (раскладывая квадрат суммы) α(Es2 + 2EsЕа + Еа2).

Все наши вычисления проводились в предположении, что толщина слоя материала мала и показатель преломления его незначительно отличается от единицы, тогда Еа оказывается много меньше Es (это было сделано с единственной целью — упростить вычисления). В рамках нашего приближения член Еa2 следует опустить, пренебрегая им по сравнению с EsEa. Вы можете на это возразить: «Тогда нужно отбросить и EsEa, потому что этот член много меньше Es2». Действительно, EsEa много меньше Еs2, но если мы выбросим этот член, то получим приближение, в котором эффекты среды не учитываются совсем! Правильность наших вычислений в рамках сделанного приближения проверяется тем, что мы всюду оставляли члены, пропорциональные —NΔz (плотности атомов в среде), но выбрасывали члены порядка (NΔz)2 и более высоких степеней по NΔz. Наше приближение можно было бы назвать «приближением малой плотности».

Заметим, кстати, что наше уравнение баланса энергии не содержит энергии отраженной волны. Но так и должно быть, потому что амплитуда отраженной волны пропорциональна NΔz, а энергия пропорциональна (NΔz)2.

Чтобы найти последний член в (31.23), нужно вычислить работу, совершаемую падающей волной над электронами за 1 сек. Работа, как известно, равна силе, умноженной на расстояние; отсюда работа в единицу времени (называемая также мощностью) дается произведением силы на скорость. Точнее, она равна F·v, но в нашем случае сила и скорость имеют одинаковое направление, поэтому произведение векторов сводится к обычному (с точностью до знака). Итак, работа, совершаемая в 1 сек над каждым атомом, равна qeEsν. Поскольку на единичную площадку приходится NΔz атомов, последний член в уравнении (31.23) оказывается равным NΔzqeEsν. Уравнение баланса энергии принимает вид

Маленькое изображение
 

Члены αEs2 сокращаются, и мы получаем

Маленькое изображение
 

Возвращаясь к уравнению (30.19), находим Еа для больших z:

Маленькое изображение
 

(напомним, что η=NΔz). Подставляя (31.26) в левую часть равенства (31.25), получаем

Маленькое изображение
 

Ho Es (в точке z) равно Es (в точке атома) с запаздыванием на z/c. Поскольку среднее значение не зависит от времени, оно не изменится, если временной аргумент запаздывает на z/c, т.е. оно равно Еs (в точке атома)·ν, но точно такое же среднее значение стоит и в правой части (31.25). Обе части (31.25) будут равны, если выполняется соотношение

Маленькое изображение
 

Таким образом, если справедлив закон сохранения энергии, то количество энергии электрической волны, приходящееся на единичную площадку в единицу времени (то, что мы называем интенсивностью), должно быть равно ε0c Е2. Обозначив интенсивность через S, получим

Маленькое изображение
 

где черта означает среднее по времени. Из нашей теории показателя преломления получился замечательный результат!



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.