На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Более точная формулировка принципа Ферма

До сих пор мы фактически пользовались неправильной формулировкой принципа наименьшего времени. Здесь мы сформулируем его более точно. Мы неправильно называли его принципом наименьшего времени и для удобства по ходу дела применяли неправильную его трактовку. Но теперь мы выясним точное содержание принципа. Пусть имеется зеркало. Мы его показали на фиг. 26.3. Откуда свет знает, что он должен двигаться к зеркалу? Очевидно, путь, требующий наименьшего времени,— это линия АВ. Кое-кто поэтому может сказать: «Иногда этот путь требует как раз наибольшего времени». Так это неправильно! Путь по кривой наверняка займет еще больше времени! Точная формулировка принципа следующая: луч, проходящий по траектории, обладает тем свойством, что любое малое изменение пути (скажем, на 1%), расположения точки падения луча на зеркало, или формы кривой, или какие-либо иные изменения, не приводит в первом порядке к изменению времени прохождения; изменение времени происходит только во втором порядке. Другими словами, согласно этому принципу, свет выбирает один путь из множества близлежащих, требующих почти одинакового времени для прохождения.

Маленькое изображениеС принципом наименьшего времени связана еще одна трудность, которую многие, не любящие такого рода теории, никак не могут переварить. Теория Снелла помогает легко «понять» поведение света. Свет проходит, видит перед собой поверхность и отклоняется, потому что на поверхности с ним что-то происходит. Легко понять идею причинности, проявляющуюся в том, что свет идет из одной точки в другую, а затем в следующую. Но принцип наименьшего времени есть философский принцип, который совсем иначе объясняет причину явлений в природе. Вместо причинной обусловленности, когда из одного нашего действия вытекает другое и т. д., этот принцип говорит следующее: в данной ситуации свет выбирает путь с наименьшим, или экстремальным временем. Но как удается свету выбирать свой путь? Вынюхивает он что ли соседние пути и сравнивает их потом друг с другом? В некотором смысле так и происходит. Эту способность света нельзя понять в рамках геометрической оптики, поскольку она связана с понятием длины волны; длина волны, грубо говоря, есть тот отрезок впереди лежащего пути, который свет может «почувствовать» и сравнить с соседними путями. Этот факт трудно продемонстрировать на опыте со светом, так как длина волны света чрезвычайно мала. Но радиоволны с длиной волны, скажем, 3 см, «видят» намного дальше. Предположим, имеется источник радиоволн, детектор и экран со щелью, как показано на фиг. 26.13; при этих условиях лучи будут проходить из S в D, поскольку это прямолинейная траектория, и даже если сузить щель, лучи все равно пройдут. Но если теперь отодвинуть детектор в точку D`, то при широкой щели волны не пойдут из S в D`, потому что они сравнят близлежащие пути и скажут: «Нет, друг мой, все эти пути требуют другого времени». С другой стороны, если оставить только узенькую щелку и таким образом помешать волнам выбирать путь, то окажутся годными уже несколько путей и волны пойдут по ним! Если щель узкая, в точку D` попадет больше излучения, чем через широкую щель! 

Такой же опыт возможен со светом, но в большом масштабе его проделать трудно. Этот эффект, однако, можно наблюдать в следующих простых условиях. Найдите маленький и яркий источник света, например уличный фонарь где-нибудь в конце улицы или отражение солнца от колеса автомобиля. Поставьте перед глазами два пальца, оставив для света узенькую щель, и постепенно сближайте пальцы, пока щель полностью не исчезнет. Вы увидите, что свет, который вначале казался крохотной точкой, начнет расплываться и даже вытянется в длинную линию. Происходит это потому, что между пальцами оставлена лишь очень маленькая щель и свет не идет, как обычно, по прямой, а расходится под некоторым углом и в глаз попадает с разных направлений. Если вы будете достаточно внимательны, то заметите еще боковые максимумы и своеобразную кайму по краям. Кроме того, само изображение будет окрашено. Все это будет в свое время объяснено, а сейчас этот опыт (а его очень легко проделать) просто демонстрирует, что свет не всегда распространяется по прямой.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.