На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Сферически симметричные решения

Попробуем сперва отыскать какую-нибудь функцию попроще, чтобы она удовлетворяла уравнению (17.7). Хотя волновая функция ψ в общем случае будет зависеть как от θ и φ, так и от r, можно все же поискать, не бывает ли такого особого случая, когда ψ не зависит от углов. Если волновая функция от углов не зависит, то при поворотах системы координат ни одна из амплитуд никак не будет меняться. Это означает, что все компоненты момента количества движения равны нулю. Такая функция ψ должна соответствовать состоянию с равным нулю полным моментом количества движения. (На самом деле, конечно, равен нулю только орбитальный момент количества движения, потому что остается еще спин электрона, но мы на эту часть момента не обращаем внимания.) Состояние с нулевым орбитальным моментом количества движения имеет особое название. Его называют «s-состоянием» (можете считать, что s от слова «сферически симметричный»).
 
Раз ψ не собирается зависеть от θ и φ, то в полном лапласиане останется только один первый член и (17.7) сильно упростится:

Маленькое изображение
 

Прежде чем заняться решением подобного уравнения, хорошо бы, изменив масштаб, убрать из него все лишние константы вроде е2, т, h. От этого выкладки станут легче. Если сделать подстановки

Маленькое изображение
 

то уравнение (17.8) обратится (после умножения на ρ) в

Маленькое изображение
 

Эти изменения масштаба означают, что мы измеряем расстояние r и энергию Е в «естественных» атомных единицах. Например, ρ=r/rB, где rB=h2/те2, называется «боровским радиусом» и равно примерно 0,528 А. Точно так же ε=E/ER, где ER= mе4/2h2. Эта энергия называется «ридбергом» и равна примерно 13,6 эв.
 
Раз произведение ρψ встречается в обеих частях уравнения, то лучше работать с ним, чем с самим ψ. Обозначив

Маленькое изображение
 

мы получим уравнение, которое выглядит проще:

Маленькое изображение
 

Теперь нам предстоит найти функцию f, которая удовлетворяет уравнению (17.13), иными словами, просто решить дифференциальное уравнение. К сожалению, не существует никаких общих, годных во всех случаях жизни методов решения любого дифференциального уравнения. Вы должны просто покрутить его то так, то этак. Хоть уравнение не из легких, но люди все же нашли, что его можно решить при помощи следующей процедуры. Первым делом вы заменяете f, которое является некоторой функцией от ρ, произведением двух функций:

Маленькое изображение
 

Это просто означает, что вы выносите из f (ρ) множитель еαρ. Для любого f (ρ) это можно сделать. Задача теперь просто свелась к отысканию подходящей функции g (ρ).
 
Подставив (17.14) в (17.13), мы получим следующее уравнение для g:

Маленькое изображение
 

Мы вправе выбрать любое α, поэтому сделаем так, чтобы было

Маленькое изображение
 

Вы можете подумать, что мы не так уж далеко ушли от уравнения (17.13); но новое уравнение тем хорошо, что его можно легко решить разложением g (ρ) в ряд по ρ. В принципе есть возможность таким же способом решать и (17.13), но только все проходит сложнее. Мы говорим: уравнению (17.17) можно удовлетворить некоторой функцией g (ρ), которая записывается в виде ряда

Маленькое изображение
 

где ak— постоянные коэффициенты. И нам осталось только найти подходящую бесконечную последовательность коэффициентов! Проверим, годится ли такая запись решения. Первая производная такой функции g (ρ) равна

Маленькое изображение
 

Пока еще не ясно, вышло ли у нас что-нибудь; но мы рвемся вперед. Если мы первую сумму заменим некоторым ее эквивалентом, то все выражение станет выглядеть лучше. Первый член в сумме равен нулю, поэтому каждое k можно заменить на k+1, от этого ничего в бесконечном ряде не изменится. Значит, первую сумму мы вправе записать и так:

Маленькое изображение
 

Теперь можно объединить все три суммы в одну:

Маленькое изображение
 

Этот степенной ряд должен обращаться в нуль при всех мыслимых значениях ρ, что возможно лишь тогда, когда коэффициенты при каждой степени ρ порознь равны нулю. Мы получим решение для атома водорода, если отыщем такую последовательность ak, для которой

Маленькое изображение
 

при всех k > 1. А это, конечно, устроить легко. Выберите какое угодно а1. Затем все прочие коэффициенты образуйте с помощью формулы

Маленькое изображение
 

Пользуясь ею, вы получите а2, а3, а4 и т. д., и каждая пара будет, конечно, удовлетворять (17.21). Мы получим ряд для g (ρ), удовлетворяющий (17.17). С его помощью мы напишем ψ — решение уравнения Шредингера. Обратите внимание, что решения зависят от того, какова предполагаемая энергия (через α), но для каждого значения ε получается свой ряд.
 
Решение-то у нас есть, но что оно представляет физически? Понятие об этом мы получим, поглядев, что происходит вдалеке от протона — при больших ρ. Там основное значение приобретают наивысшие степени членов ряда, т. е. нам надо посмотреть, что бывает при больших k. Когда к»1, то уравнение (17.22) приближенно совпадает с

Маленькое изображение
 

Но это как раз коэффициенты разложения в ряд е+2αρ. Функция g оказывается быстро растущей экспонентой. Даже после умножения на еαρ получающаяся функция f (ρ) [см. (17.14)] будет при больших ρ меняться как еαρ. Мы нашли математическое решение, но оно не является физическим. Оно представляет случай, когда электрону менее всего вероятно очутиться вблизи протона! Чаще всего он вам повстречается на очень больших расстояниях ρ. А волновая функция для связанного электрона должна при больших ρ стремиться к нулю.
 
Придется подумать, нельзя ли как-нибудь обмануть решение. Оказывается, можно. Посмотрите! Если бы, по счастью, оказалось, что α = 1/n, где n — любое целое число, то уравнение (17.22) привело бы к an + 1=0. И все высшие члены обратились бы тоже в нуль. Вышел бы не бесконечный ряд, а конечный многочлен. Любой многочлен растет медленнее, чем еαρ, поэтому множитель еαρ наверняка забьет его при больших ρ, и функция f при больших ρ будет стремиться к нулю. Единственные решения для связанных состояний это те, для которых α = 1/n, где n=1, 2, 3, 4 и т. д.
 
Оглядываясь на уравнение (17.16), мы видим, что у сферически симметричного волнового уравнения могут существовать решения для связанных состояний лишь при энергиях

Маленькое изображение
 

Допустимы только те энергии, которые составляют именно такую часть ридберга ER=me4/2h2, т. е. энергия n-го уровня равна

Маленькое изображение
 

Кстати, ничего мистического в отрицательных энергиях нет. Они отрицательны просто потому, что когда мы решили писать V=– е2/r, то тем самым в качестве нуля энергии выбрали энергию электрона, расположенного вдалеке от протона. Когда он ближе, то его энергия меньше, т. е. ниже нуля. Энергия ниже всего (самая отрицательная) при n = 1 и возрастает к нулю с ростом n.
 
Еще до открытия квантовой механики экспериментальное изучение спектра водорода показало, что уровни энергии описываются формулой (17.24), где ЕR, как это следует из измерений, равно примерно 13,6 эв. Затем Бор придумал модель, которая привела к тому же уравнению (17.24) и предсказала, что ER должно равняться me4/2h2. Первым большим успехом теории Шредингера явилось то, что она смогла воспроизвести этот результат прямо из основного уравнения движения электрона.
 
Теперь, когда мы рассчитали наш первый атом, давайте рассмотрим свойства полученного нами решения. Объединим все выделившиеся по дороге факторы и выпишем окончательный вид решения:

Маленькое изображение
 

Пока нас интересует главным образом относительная вероятность обнаружить электрон в том или ином месте, можно в качестве а1 выбирать любое число. Возьмем, например, а1 = 1. (Обычно выбирают а1 так, чтобы волновая функция была «нормирована», т. е. чтобы полная вероятность обнаружить электрон где бы то ни было в атоме была равна единице. Мы в этом сейчас не нуждаемся.)
 
В низшем энергетическом состоянии n=1 и

Маленькое изображение
 

Если атом водорода находится в своем основном (наиболее низком энергетическом) состоянии, то амплитуда того, что электрон будет обнаружен в каком-то месте, экспоненциально падает с расстоянием от протона. Вероятнее всего встретить его вплотную близ протона. Характерное расстояние, на котором он встречается, составляет около одного ρ, или одного боровского радиуса rB.
 
Подстановка n=2 дает следующий более высокий уровень. В волновую функцию этого состояния входят два слагаемых. Она равна

Маленькое изображение
 

Волновая функция для следующего уровня равна

Маленькое изображение
 

Маленькое изображениеЭти три волновые функции начерчены на фиг. 17.2. Общая тенденция уже видна. Все волновые функции при больших ρ, поколебавшись несколько раз, приближаются к нулю. И действительно, число «изгибов» у ψn как раз равно n, или, если угодно, число пересечений оси абсцисс — число нулей — равно n — 1.



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.