На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Сложение моментов количества движения

Когда мы изучали сверхтонкую структуру атома водорода в гл. 10 (вып. 8), нам пришлось рассчитывать внутренние состояния системы, составленной из двух частиц — электрона и протона — со спинами 1/2. Мы нашли, что четверка возможных спиновых состояний такой системы может быть разбита на две группы — на тройку состояний с одной энергией, которая во внешнем поле выглядела как частица со спином 1, и на одно оставшееся состояние, которое вело себя как частица со спином 0. Иначе говоря, объединяя две частицы со спином 1/2, можно образовать  систему, «полный спин» которой равен либо единице, либо нулю. В этом параграфе мы хотим рассмотреть на более общем уровне спиновые состояния системы, составленной из двух частиц с произвольными спинами. Это другая важная проблема, связанная с моментами количества движения кванто-вомеханической системы.
 
Перепишем сперва результаты гл. 10 для атома водорода в форме, которая позволит распространить их на более общий случай. Мы начали с двух частиц, которые теперь обозначим так: частица а (электрон) и частица b (протон). Спин частицы а был равен ja ( = 1/2), а z-компонента момента количества движения та могла принимать одно из нескольких значений (на самом деле два, а именно та = +1/2 или та = — 1/2). Точно так же спиновое состояние частицы b описывалось ее спином jb и z-компонентой момента количества движения тb. Из всего этого можно было составить несколько комбинаций спиновых состояний двух частиц. Например, из частицы а с та = 1/2 и частицы b с тb = — 1/2, можно было образовать состояние | а, + 1/2; b, 1/2>. Вообще, объединенные состояния образовывали систему, у которой «спин системы», или «полный спин», или «полный момент количества движения» J мог быть равеп либо единице, либо нулю, а z-компонента момента количества движения М могла равняться +1, 0 или —1 при J = 1 и нулю при J=0. На этом новом языке формулы (10.41) и (10.42) можно переписать так, как показано в табл. 16.3.
 
Левый столбец таблицы описывает составное состояние через его полный момент количества движения J и z-компоненту М.

Маленькое изображение
 

Правый столбец показывает, как составляются эти состояния из значений т двух частиц а и b.
 
Мы хотим обобщить этот результат на состояния, составленные из двух объектов а и b с произвольными спинами ja и jb. Начнем с разбора примера, когда ja = 1/2 и jь = 1, а именно с атома дейтерия, в котором частица а — это электрон е, а частица b— ядро, т. е. дейтрон d. Тогда ja = je = 1/2. Дейтрон образован из одного протона и одного нейтрона в состоянии с полным спином 1, так что jb = jd = 1. Мы хотим рассмотреть сверхтонкие состояния дейтерия, как мы сделали это для водорода. Поскольку у дейтрона может быть три состояния, ть = md = +1, 0, —1, а у электрона — два, та = те = + 1/2, 1/2, то всего имеется шесть возможных состояний, а именно (используется обозначение  |е, те; d, md>):

Маленькое изображение
 

Обратите внимание, что мы разверстали состояния согласно значениям суммы те и md в порядке ее убывания.
 
Спросим теперь: что случится с этими состояниями, если спроецировать их в другую систему координат? Если эту новую систему просто повернуть вокруг оси z на угол φ, то состояние |е, те; d, md> умножается на

Маленькое изображение
 

(Состояние можно считать произведением | е, те> | d, md>, и каждый вектор состояния независимо привнесет свой собственный экспоненциальный множитель.) Множитель (16.43) имеет форму е¡, поэтому z-компонента момента количества движения у состояния | е, те; d, md> окажется равной

Маленькое изображение
 

Иначе говоря, z-компонента полного момента количества движения есть сумма z-компонент моментов количества движения отдельных  частей.
 
Значит, в перечне состояний (16.42) верхнее состояние имеет М = +3/2, два следующих М = +1/2 , затем два М = — 1/2 и последнее состояние М = 3/2. Мы сразу же видим, что одной из возможностей для спина J  объединенного состояния  (для полного момента количества движения) должно быть 3/2, это потребует четырех состояний с М = +3/2, +1/2, — 1/2 и — 3/2.
 
На М = +3/2 есть только один кандидат, и мы сразу видим, что

Маленькое изображение
 

Но что является состоянием |J = 3/2, М = + 1/2 >? Кандидатов здесь два, они стоят во второй строчке (16.42), и всякая их ли нейная  комбинация   тоже  даст М = + 1/2. Значит, в общем случае можно ожидать, что

Маленькое изображение
 

где α и β — два числа. Их именуют коэффициенты Клебша — Гордона. Найти их и будет нашей очередной задачей.
 
И мы их легко найдем, если просто вспомним, что дейтрон состоит из нейтрона и протона, и в явном виде распишем состояния дейтрона, пользуясь правилами табл. 16.3. Если это проделать, то перечисленные в (16.42) состояния будут выглядеть так, как показано в табл. 16.4.
 
Пользуясь состояниями из этой таблицы, мы хотим образовать четверку состояний с J = 3/2. Но ответ нам уже известен, потому что в табл. 16.1 уже стоят состояния со спином 3/2, образованные из трех частиц со спином 1/2. Первое состояние в табл. 16.1 имеет |J = 3/2, М = +3/2>, это | + + + >, а в наших нынешних обозначениях это | е, + 1/2; n, + 1/2; р, + 1/2 > или первое состояние из табл. 16.4. Но это состояние — то же самое, что первое по списку в (16.42), так что наше выражение (16.45) подтверждается. Вторая строчка в табл. 16.1 утверждает, если воспользоваться нашими теперешними обозначениями, что

Маленькое изображение
 

То, что стоит в правой части, можно, очевидно, составить из двух членов во второй строчке табл. 16.4, взяв √2/3 от первого члена и  1/3 от  второго. Иначе говоря, (16.47) эквивалентно

Маленькое изображение
 

Маленькое изображение
 

Мы нашли два наших первых коэффициента Клебша — Гордона α и β [см. (16.46)]:

Маленькое изображение
 

Это и есть правила составления из спина 1 и спина 1/2 полного спина J = 3/2. Мы свели (16.45) и (16.50) в табл. 16.5.

Маленькое изображение
 

Но у нас пока есть только четыре состояния, а у системы, которую мы рассматриваем, их шесть.
 
Из двух состояний во второй строчке (16.42) мы для образования | J = 3/2, М =+ 1/2 > составили только одну линейную комбинацию. Есть и другая линейная комбинация, ортогональная к ней, у нее тоже М = + 1/2 и она имеет вид

Маленькое изображение
 

Точно так же из двух состояний в третьей строке (16.42) можно скомбинировать два взаимно-ортогональных состояния, каждое с М=— 1/2. То, которое ортогонально к (16.50), имеет вид

Маленькое изображение
 

Это и есть два оставшихся состояния. У них М = me+md±1/2; эти состояния должны соответствовать J = 1/2. Итак, мы имеем

Маленькое изображение
 

Можно убедиться, что эти два состояния действительно ведут себя как состояния объекта со спином 1/2; для этого надо выразить дейтронную часть через нейтронные и протонные состояния (при помощи табл. 16.3). Первое состояние в (16.53) превратится в

Маленькое изображение
 

а это можно переписать так:

Маленькое изображение
 

Посмотрите теперь на выражение в первых фигурных скобках и подумайте, что получается при объединении е и р. Вместе они образуют состояние с нулевым спином (см. нижнюю строку в табл. 16.3) и не дают вклада в момент количества движения. Остался только нейтрон, значит, вся первая фигурная скобка (16.56) будет вести себя при поворотах как нейтрон, а именно как состояние с J= 1/2 , М=±1/2.
 
Повторяя те же рассуждения, убедимся, что во вторых фигурных скобках (16.56) электрон и нейтрон объединяются, чтобы образовать нулевой момент количества движения, и остается только вклад протона — с mp =+1/2. Скобка опять ведет себя как объект с J = + 1/2, М=+ 1/2. Значит, и все выражение (16.56) преобразуется как |J = + 1/2, М=+ 1/2>, чего мы и хотели. Состояние М= 1/2, отвечающее формуле (16.56), можно расписать так (заменив везде, где нужно, +1/2 на — 1/2):

Маленькое изображение
 

Вы легко проверите, что это совпадает со второй строчкой в (16.54), как и полагается, если каждая скобка представляет собой одно из двух состояний системы со спином 1/2. Значит, наши результаты подтвердились.  Дейтрон и электрон могут существовать в шести спиновых состояниях, четыре из которых ведут себя как состояния объекта со спином 3/2 (табл. 16.5), а два — как объект со спином 1/2 (16.54).
 
Результаты табл. 16.5 и уравнения (16.54) мы получили, воспользовавшись тем, что дейтрон состоит из нейтрона и протона. Правильность уравнений не зависит от этого особого обстоятельства. Для любого объекта со спином 1, объединяемого с объектом со спином 1/2, законы объединения (и коэффициенты) одни и те же. Совокупность уравнений в табл. 16.5 означает, что если система координат поворачивается, скажем, вокруг оси у, так что состояния частицы со спином 1/2 и частицы со спином 1 изменяются согласно табл. 16.1 и 16.2, то линейные комбинации по правую сторону знака равенства будут изменяться так, как это свойственно объекту со спином 3/2. При таком же повороте состояния (16.54) будут меняться как состояния объекта со спином 1/2. Результаты зависят только от свойств относительно поворотов (т. е. от спиновых состояний) двух исходных частиц, но отнюдь не от происхождения их моментов количества движения. Мы этим происхождением воспользовались лишь для вывода формул, выбрав частный случай, в котором одна из составных частей сама состоит из двух частиц со спином 1/2 в симметричном состоянии. Все наши результаты мы свели в табл. 16.6, изменив индексы е и d на а и b, чтобы подчеркнуть их общность.

Маленькое изображение
 

Поставим теперь себе общую задачу найти состояния, которые можно образовать, объединяя два объекта с произвольными спинами. Скажем, у одного спин ja (так что его z-компонента та пробегает 2jа+1 значений от — j до +ja), а у другого jb (с z-компонентой тb, пробегающей значения от — jb до +jb).
 
Объединенные состояния суть | a, та; b, тb>, их всего (2jа + 1)(2jb + 1). Какие же состояния с полным спином j мы обнаружим?
 
Полная z-компонента М момента количества движения равняется таb, и все состояния можно перечислить, опираясь на величину М [как в (16.42)]. Наибольшее М является единственным; оно отвечает значениям ma=ja и mb=jb и равно попросту ja+jb. Это означает, что наибольший полный спин J также равен сумме jа+jь:

Маленькое изображение
 

Следующему значению М, меньшему чем Ммакс на единицу, будут соответствовать два состояния (либо та, либо ть меньше своих максимальных значений на единицу). Из них должно быть образовано одно состояние, принадлежащее совокупности с J=ja+jb , и останется еще одно, которое будет принадлежать новой совокупности с J=ia+jb — 1. Следующее значение М (третье сверху) можно составить тремя путями (из ma=ja — 2, mb=jb, из ma=ja — 1, mb=jb — 1 и из ma = ja, mb=jb — 2). Два из них принадлежат к уже начавшим составляться группам; третье говорит нам, что надо включить в рассмотрение и состояния с J=ja+jb — 2. Такие рассуждения будут продолжаться до тех пор, пока уже нельзя будет, меняя то одно, то другое т, получать новые состояния.
 
Пусть из ja и jb меньшим является jb (а если они одинаковы, возьмите любое из них); тогда понадобятся только 2jь значений полного спина j, идущих единичными шагами от ja+jb вниз к ja jь. Иначе говоря, когда объединяются два объекта со спинами ja и jb, то полный момент количества движения j их системы может равняться одному из значений:

Маленькое изображение
 

(Написав | ja — jb | вместо jа — jь, мы можем избежать напоминания о том, что jajb.)
 
Для каждого из этих значений j имеется 2j+1 состояний с различными значениями М; М меняется от +J до — J. Каждое из них образовано из линейных комбинаций исходных состояний | а, та; b, ть> с соответствующими коэффициентами — коэффициентами Клебша — Гордона для каждого отдельного члена. Можно считать, что эти коэффициенты дают «количество» состояния |ja, ma; jb, ть>, проявляющегося в состоянии | J, M>. Так что каждый из коэффициентов Клебша — Гордона обладает, если угодно, шестью индексами, указывающими его положение в формулах типа приведенных в табл. 16.3 и 16.6. Иначе говоря, обозначая, скажем, эти коэффициенты С (J, М; ja, ma; jb, ть), можно выразить равенство во второй строчке табл. 16.6 так:

Маленькое изображение
 

Мы не будем здесь подсчитывать коэффициенты для других частных случаев. Но вы обнаружите такие таблицы во многих книжках. Попробуйте сами подсчитать другой случай, например объединение двух объектов со спином 1. Мы же просто привели в табл. 16.7 окончательный результат.

Маленькое изображение
 

Эти законы объединения моментов количества движения имеют очень важное значение в физике частиц, их приложениям поистине нет конца. К сожалению, у нас нет сейчас больше времени на другие примеры.



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.