Главная >> Фейнмановские лекции по физике >> Том 8 >> Глава 4. Спин одна вторая Повороты вокруг оси z
Теперь мы уже подготовлены к тому, чтобы отыскать матрицу преобразования Rj¡,связывающую два разных представления. Владея нашим правилом объединения поворотов и нашим предположением, что в пространстве нет предпочтительного направления, мы владеем ключом для отыскания матрицы любого произвольного поворота. Решение здесь только одно. Начнем с преобразования, которое отвечает повороту вокруг оси z. Пусть имеются два прибора S и Т, поставленных друг за другом вдоль одной прямой; оси их параллельны и смотрят из страницы на вас (фиг. 4.4, а). Это их направление мы примем за ось z. Ясно, что если пучок в приборе S идет вверх (к + z), то то же будет и в аппарате Т. Точно так же, если он в S идет вниз, то и в Т он направится вниз.
Положим, однако, что прибор Т был повернут на какой-то угол, но его ось, как и прежде, параллельна оси прибора S, как на фиг. 4.4, б. Интуитивно хочется сказать, что пучок (+) в S будет по-прежнему переходить в пучок (+) в Т, потому что и поля, и их градиенты характеризуются тем же физическим направлением. И это вполне правильно. Точно так же и пучок (—) в S будет переходить в пучок (—) в Т. Тот же результат применим для любой ориентации Т в плоскости ху прибора S. Что же отсюда следует для связи между С′+ = <+T | ψ>, С′_ = <–T | ψ> и С+ = <+S | ψ>, С_ = <–S | ψ>? Можно подумать, что любой поворот вокруг оси z «системы отсчета» базисных состояний оставляет амплитуды С± пребывания «вверху» и «внизу» теми же, что и раньше, и написать С′+= С+ и С′_= С_. Но это неверно. Все, что можно отсюда заключить,— это, что при таких поворотах вероятности оказаться в «верхнем» пучке приборов S и Т одинаковы, т. е.
|
Но мы не вправе утверждать, что фазы амплитуд, относящихся к прибору Т, не могут в двух различных ориентациях а и б (фиг. 4.4) различаться.
Пары приборов, показанных на фиг. 4.4, на самом деле отличаются друг от друга, в чем можно убедиться следующим образом. Предположим, что мы перед прибором S поставили другой, создающий чистое (+x)-состояние. (Ось х направлена на рисунке вниз.) Эти частицы расщеплялись бы в S на пучки (+z) и (—z), но на выходе S (в точке Р1) оба пучка снова соединялись бы и восстанавливали состояние (+ х). Затем то же самое происходило бы в Т. Если бы за Т поставить третий прибор U, ось которого направлена по (+ х), как показано на фиг. 4.5, а, то все частицы пошли бы в пучок (+) прибора U. Теперь представим, что произойдет, если Т и U вместе повернуть на 90°, как показано на фиг. 4.5, б. Прибор Т опять будет пропускать все, что в него поступает, так что частицы, входящие в U, будут в (+ x)-состоянии по отношению к S. Но U теперь анализирует состояние (+y) (по отношению к S), а это совсем не то, что раньше. (Из симметрии следует ожидать, что через него пройдет только половина частиц.)
Что же могло перемениться? Приборы Т и U по отношению друг к другу расположены одинаково. Могла ли измениться физика просто из-за того, что Т и U иначе ориентированы? Нет, гласит наше первоначальное предположение. Значит, различаться в двух случаях, показанных на фиг. 4.5, должны амплитуды по отношению к Т. То же должно быть, следовательно, и на фиг. 4.4. Частица должна как-то уметь узнавать, что в Рг1 она завернула за угол. Как же она может об этом поведать? Что ж, остается только одно: величины С′+ и С′+ в обоих случаях одинаковы, но могут — а на самом деле должны — обладать разными фазами. Мы приходим к заключению, что С′+ и С+ должны быть связаны формулой
|
где λ и μ — вещественные числа, которые как-то должны быть связаны с углом между S и Т.
В данный момент единственное, что мы можем сказать про λ и μ,— это то, что они не могут быть равны друг другу (кроме показанного на фиг. 4.5, а особого случая, когда Т и S ориентированы одинаково). Мы видели, что изменение всех амплитуд на одну и ту же фазу ни к каким физическим следствиям не приводит. По той же причине всегда можно добавить к λ и μ любое постоянное число — это тоже ничего не изменит. Значит, нам представляется возможность выбрать λ и μ равными плюс и минус одному и тому же числу. Всегда можно взять
Итак, мы договоримся считать μ = — λ и придем к общему правилу, что поворот прибора, относительно которого ведется отсчет, вокруг оси z на какой-то угол приводит к преобразованию
Абсолютные значения одинаковы, а фазы различны. Эти-то фазовые множители и отвечают за различные результаты двух опытов, показанных на фиг. 4.5.
Теперь надо узнать закон, связывающий λ с углом между S и Т. Для одного случая ответ известен. Если угол — нуль, то и λ — нуль. Теперь предположим, что фазовый сдвиг λ есть непрерывная функция угла φ между S и Т (см. фиг. 4.4) при φ, стремящемся к нулю. По-видимому, это единственное разумное допущение. Иными словами, если свернуть Т с прямой линии S на малый угол ε, то и λ тоже будет малым числом, скажем тε, где т — некоторый коэффициент. Мы пишем тε, потому что можем доказать, что λ обязано быть пропорционально ε. Если бы мы поставили за T новый прибор Т′, тоже образующий с Т угол ε, а с S тем самым образующий угол 2ε, то по отношению к Т мы бы имели
|
Но мы знаем, что должны были бы получить тот же результат если бы сразу за S поставили Т′! Значит, когда угол удваивается, то удваивается и фаза. Эти аргументы мы можем, естественно, обобщить и построить любой поворот из последовательных бесконечно малых поворотов. Мы заключаем, что λ пропорционально φ для любого угла φ. Поэтому всегда можно писать λ = mφ.
Общий полученный нами результат состоит, следовательно, в том, что для Т, повернутого вокруг оси z относительно S на угол φ,
|
Для угла φ и для всех поворотов, которые встретятся нам в будущем, мы условимся считать, что положительным поворотом будет поворот правого винта, который ввинчивается в положительном направлении z.
Теперь остается узнать, каким должно быть т. Попробуем сперва следующее рассуждение: пусть Т повернулся на 360°; ясно, что тогда он опять очутится под нулем градусов, и мы должны будем иметь С′+ = С+ и С′_= С_, или, что то же самое, e¡m2π= 1. Мы получаем m = 1. Это рассуждение не годится!
Чтобы убедиться в этом, допустим, что Т повернут на 180°. Если бы m было равно единице, мы получили бы С′+= e¡π С+= – С+ и C′–= e¡π С_ = – С_. Но это просто опять получилось первоначальное состояние. Обе амплитуды попросту умножены на —1; это возвращает нас к исходной физической системе. (Опять случай всеобщей перемены фаз.) Это означает, что если угол между Т и S на фиг. 4.5, б увеличивается на 180°, то система (по отношению к Т) оказывается неотличимой от случая 0° и частицы должны опять проходить через состояние (+) прибора U. Но при 180° состояние (+) прибора U — это состояние (—х) начального прибора S. Так что состояние (+x) станет состоянием (—х). Но мы-то ведь ничего не делали для изменения начального состояния; ответ поэтому ошибочен. Не может быть, чтобы m = 1.
Нет, все должно быть иначе: надо, чтобы только поворот на 360° (и ни на какие меньшие углы) воспроизводил то же самое физическое состояние. Это случится при m =1/2. Тогда и только тогда первым углом, воспроизводящим то же самое физическое состояние, будет угол φ = 360° *. При этом будет
|
Очень курьезно вдруг обнаружить, что поворот прибора на 360° приводит к новым амплитудам. Но на самом деле они не новы, потому что одновременная перемена знака ни к какой новой физике не приводит. Если кто-нибудь задумает переменить все знаки у всех амплитуд, подумав, что он повернулся на 360°, то это его дело — физику он получит ту же, прежнюю. Итак, наш окончательный ответ таков: если мы знаем амплитуды С + и С_ для частиц со спином 1/2 по отношению к системе отсчета S и если затем мы используем базисную систему, связанную с Т (Т получается из S поворотом на φ относительно оси z), то новые амплитуды выражаются через старые так:
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|