На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Базисные состояния

Эти результаты иллюстрируют один из основных принципов квантовой механики: любая атомная система может быть разделена процессом фильтрования на определенную совокупность того, что мы назовем базисными состояниями, и будущее поведение атомов в любом данном отдельном базисном состоянии зависит только от природы базисного состояния — оно не зависит от предыдущей истории. Базисные состояния зависят, конечно, от примененного фильтра; например, три состояния (+Т), (0 Т) и (—Т)—это одна совокупность базисных состояний, а три состояния (+S), (0 S) и (—S) — другая. Возможностей сколько угодно, и ни одна не хуже другой.
 
Необходимо быть осторожным, утверждая, что мы рассматриваем хорошие фильтры, которые действительно создают «чистые» пучки. Если, скажем, наш прибор Штерна — Герлаха недостаточно хорошо отделяет пучки друг от друга, то мы не можем произвести полного разделения на базисные состояния. Мы можем проверить, есть ли у нас чистые базисные состояния, посмотрев, смогут ли пучки опять расщепиться еще одним таким же фильтром. Если, например, имеется чистое состояние (+T), то все атомы пройдут через

Маленькое изображение
 

но ни один из них не пройдет ни через

Маленькое изображение
 

Наше утверждение относительно базисных состояний означает, что есть возможность отфильтровать пучок до некоторого чистого состояния, так что дальнейшее фильтрование идентичным прибором уже станет невозможным.
 
Следует еще отметить, что все, что мы говорим, до конца верно лишь в идеализированных случаях. В каждом реальном приборе Штерна — Герлаха надо подумать и о дифракции на щелях, которая может вынудить некоторые атомы перейти в состояния, отвечающие другим углам, и о том, нет ли в пучке атомов с другой степенью возбуждения своих внутренних состояний и т. д. Мы идеализировали наш случай и говорим только о тех состояниях, которые расщепляются в магнитном поле; при этом мы игнорируем все, что касается местоположения, импульса, внутренних возбуждений и т. п. Вообще же следовало бы рассматривать также базисные состояния, рассортированные и по отношению ко всем перечисленным характеристикам. Но для простоты мы пользуемся только нашей совокупностью трех состояний. Этого вполне достаточно для того, чтобы точно рассмотреть идеализированный случай, в котором атомы не подвергаются в приборе плохому обращению, не разрываются и, более того, покидая его, оказываются в состоянии покоя.
 
Заметьте, что мы всегда начинаем наши мысленные эксперименты с того, что берем фильтр, у которого открыт только один канал, так что начинаем всегда с определенного базисного состояния. Мы делаем это потому, что атомы выходят из печи в различных состояниях, случайно определенных тем, что произойдет в печи. (Это дает так называемый «неполяризованный» пучок.) Эта случайность предполагает вероятности «классического» толка (как при бросании монеты), которые отличаются от интересующих нас сейчас квантовомеханических вероятностей.. Работа с неполяризованным пучком привела бы нас к добавочным усложнениям, а их лучше избегать, пока мы не поймем поведения поляризованных пучков. Так что пока не пытайтесь размышлять о том, что случится, если первый аппарат пропустит сквозь себя больше одного пучка. (В конце главы мы расскажем вам, как нужно поступать и в таких случаях.)
 
А теперь вернемся назад и посмотрим, что будет, если мы перейдем от базисного состояния для одного фильтра к базисному состоянию для другого фильтра. Начем опять с

Маленькое изображение
 

Атомы, выходящие из Т, оказываются в базисном состоянии (0Т) и не помнят, что когда-то они побывали в состоянии (+ S). Некоторые говорят, что при фильтровании прибором Т мы «потеряли информацию» о былом состоянии (+ S), потому что «возмутили» атомы, когда разделяли их прибором Т на три пучка. Но это неверно. Прошлая информация теряется не при разделении на три пучка, а тогда, когда ставятся перегородки, в чем можно убедиться в следующем ряде опытов.
 
Начнем с фильтра + S и обозначим количество прошедших сквозь него атомов буквой N. Если мы вслед за этим поставим фильтр 0 Т, то число атомов, которое выйдет из фильтра, окажется некоторой частью от первоначального их количества, скажем αN. Если мы затем поставим второй фильтр +S, то до конца дойдет лишь часть β атомов. Это можно записать следующим образом:

Маленькое изображение
 

Если наш третий прибор Sвыделяет другое состояние, скажем (0 S), то через него пройдет другая часть атомов, скажем γ. Мы будем иметь

Маленькое изображение
 

Теперь предположим, что мы повторили оба эти опыта, убрав из Т все перегородки. Тогда мы получим следующий замечательный результат:

Маленькое изображение
 

В первом случае через Sпрошли все атомы, во втором — ни одного! Это один из самых великих законов квантовой механики. То, что природа действует таким образом, вовсе не самоочевидно; результаты, которые мы привели, отвечают в нашем идеализированном случае квантовомеханическому поведению, наблюдавшемуся в бесчисленных экспериментах.



ЧИТАЙТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.