На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Ферромагнитные материалы

Сейчас было бы хорошо рассказать о различных сортах магнитных материалов, применяемых в технике, и о некоторых проблемах, связанных с созданием магнитных материалов для разных целей. Прежде всего о самом термине «магнитные свойства железа», который часто приходится слышать. Он, строго говоря, не имеет смысла и способен ввести в заблуждение: «железо» как строго определенный материал не существует. Свойства железа существенно зависят от количества примесей, а также от способа его приготовления. Вы понимаете, что магнитные свойства будут зависеть от того, насколько легко движутся доменные стенки, именно это свойство будет определяющим, а совсем не то, как ведут себя отдельные атомы. Так что практически ферромагнетизм не является свойством атомов железа: это свойство куска железа в определенном состоянии. Железо, например, может находиться в двух различных кристаллических формах. Обычная форма имеет объемноцентрированную кубическую решетку, но может еще иметь и гранецентрированную решетку, которая, однако, стабильна только при температурах выше 1100°С. При этих температурах, разумеется, железо уже прошло точку Кюри. Однако, сплавляя с железом хром и никель (один из возможных составов содержит 18% хрома и 8% никеля), мы можем получить то, что называется нержавеющей сталью; хотя она и состоит главным образом из железа, но сохраняет гранецентрированную решетку даже при низких температурах. Благодаря своей кристаллической структуре этот материал обладает совершенно другими магнитными свойствами. Обычно нержавеющая сталь немагнитна в сколько-нибудь заметной степени, хотя есть сорта с другим составом сплава, которые в какой-то степени магнитны. Хотя такой сплав, как любое вещество, является магнетиком, он не ферромагнетик, как обычное железо, несмотря на то, что в основном он все же состоит из железа.

Маленькое изображениеСуществуют специальные материалы, которые были придуманы для получения особых магнитных свойств. О некоторых из них я хочу рассказать. Если нужно сделать постоянный магнит, то требуется найти материал с необычно широкой петлей гистерезиса, чтобы при выключении тока, когда мы спустимся к нулевому намагничивающему полю, намагниченность все же осталась большой. Для таких материалов границы доменов должны быть «заморожены» на месте как можно крепче. Одним из таких материалов является замечательный сплав Алнико V(51% Fe, 8% Al, 14% Ni, 24% Co, 3% Сu). Довольно сложный состав этого сплава говорит о том кропотливом труде, который надо было затратить, чтоб создать хороший магнит. Сколько терпения потребовалось для того, чтобы, смешивая по-разному пять компонент, проверять разные составы их до тех пор, пока не был найден идеальный сплав! Когда Алнико V затвердевает, у него появляется «вторая фаза», которая, осаждаясь, образует множество маленьких зерен и вызывает очень большие внутренние напряжения. Движение доменных стенок в этом материале очень затруднено. А чтобы получить вдобавок нужное строение, Алнико V механически «обрабатывается» так, чтобы кристаллы выстраивались в форме продолговатых зерен в направлении будущей намагниченности. При этом намагниченность, естественно, стремится смотреть в нужном направлении и противостоять эффектам анизотропии. Более того, в процессе приготовления материал даже охлаждается во внешнем магнитном поле, так что зерна растут с правильной ориентацией кристаллов. Петля гистерезиса Алнико V приведена на фиг. 37.12. Видите, она в 500 раз шире петли гистерезиса мягкого железа, которую я вам показывал (см.фиг.36.8). Обратимся теперь к другим сортам материалов. Для изготовления трансформаторов и моторов необходим материал, который был бы «мягким» в магнитном отношении, т. е. такой, намагниченность которого могла бы легко изменяться, так что даже очень малое приложенное поле приводило бы к очень большой намагниченности. Для этого нужны чистые, хорошо отожженные материалы с очень малым количеством дислокаций и примесей, так чтобы доменные стенки могли легко двигаться. Анизотропию желательно сделать как можно меньше. Тогда если даже зерна материала расположены под «неправильным» углом по отношению к полю, материал все равно будет легко намагничиваться. Мы говорили, что железо предпочитает намагничиваться в направлении [100], тогда как никель предпочитает направление [111], так что если мы будем в различных пропорциях смешивать железо и никель, то можно надеяться найти такую их пропорцию,  когда сплав  не будет иметь никакого предпочтительного направления, т. е. направления [100] и [111] будут эквивалентны. Оказывается, что это достигается при смешивании 70% никеля и 30% железа. Вдобавок (вероятно, по счастливой случайности, а быть может, по какой-то физической взаимосвязи между анизотропией и магнитострикционными эффектами) оказалось, что константы магнитострикции железа и никеля имеют противоположные знаки. Для сплава этих двух металлов магнитострикция исчезает при содержании никеля около 80 %. Так что при содержании никеля где-то между 70 и 80% у нас получаются очень «мягкие» магнитные материалы — сплавы, которые очень легко намагничиваются. Они называются пермаллоями. Пермаллои используются в высококачественных трансформаторах (при низких уровнях сигналов), но совершенно не годятся для постоянных магнитов. Приготовлять пермаллои и работать с ними нужно очень осторожно. Магнитные свойства пермаллоя в корне меняются, если его деформировать выше предела его упругости, так что этот материал никоим образом нельзя сгибать. Иначе в результате возникновения дислокаций, поверхностей скольжения и других механических деформаций проницаемость его уменьшается и границы доменов уже будут двигаться не так легко. Впрочем, былую высокую проницаемость можно восстановить отжигом при высокой температуре.
 
Полезно для характеристики различных магнитных материалов оперировать какими-то числами. Двумя такими характеристиками являются значения В и Н в точках пересечения петли гистерезиса с осями координат (фиг. 37.12). Эти значения называются остаточным магнитным полем Вr и коэрцитивной силой Нс. В табл. 37.1 приведены эти характеристики для некоторых материалов.

Маленькое изображение
 



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.