На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Ссылки
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Колебания под действием внешней силы

Нам остается рассмотреть колебания гармонического осциллятора под действием внешней силы. Движение в этом случав описывается уравнением

Маленькое изображение
 

Давайте подумаем, как будет вести себя грузик при этих обстоятельствах. Внешняя движущая сила может зависеть от времени каким угодно образом. Начнем с простейшей зависимости. Предположим, что сила осциллирует

Маленькое изображение
 

Обратите внимание, что ω0 — это не обязательно соо: будем считать, что можно изменять ω0, заставляя силу действовать с разной частотой. Итак, надо решить уравнение (21.8) в случае специально подобранной силы (21.9). Каким будет решение (21.8)? Одно из частных решений (общим решением мы еще займемся) выглядит так:

Маленькое изображение
 

где постоянную С еще надо определить. Иначе говоря, пытаясь найти решение в таком виде, мы предполагаем, что, если тянуть грузик взад и вперед, он в конце концов начнет качаться взад и вперед с частотой действующей силы. Проверим, может лиэто быть. Подставив (21.10) в (21.9), получим

Маленькое изображение
 

Мы уже заменили k на mω20, потому что удобнее сравнивать две частоты. Уравнение (21.11) можно поделить на содержащийся в каждом члене косинус и убедиться, что при правильно подобранном значении С выражение (21.10) будет решением. Эта величина С должна быть такой:

Маленькое изображение
 

Таким образом, грузик m колеблется с частотой действующей на него силы, но амплитуда колебания зависит от соотношения между частотой силы и частотой свободного движения осциллятора. Если ω очень мала по сравнению с ω0, то грузик движется вслед за силой. Если же чересчур быстро менять направление толчков, то грузик начинает двигаться в противоположном по отношению к силе направлении. Это следует из равенства (21.12), которое говорит нам, что величина С отрицательна, если со больше собственной частоты гармонического осциллятора ω0. (Мы будем называть ω0 собственной частотой гармонического осциллятора, а ω — приложенной частотой.) При очень высокой частоте знаменатель становится очень большим и грузик практически не движется.

Найденное нами решение справедливо только в том случае, когда уже установилось равновесие между осциллятором и действующей силой; это происходит после того, как вымрут другие движения. Эти вымирающие движения называют переходным откликом на силу F(t), а движение, описываемое (21.10) и (21.12),— равновесным откликом.

Приглядевшись к формуле (21.12), мы заметим любопытную вещь: если частота со почти равна ω0, то С приближается к бесконечности. Таким образом, если настроить силу «в лад» с собственной частотой, отклонения грузика достигнут гигантских размеров. Об этом знает всякий, кому когда-либо приходилось раскачивать ребенка на качелях. Это довольно трудно сделать, если закрыть глаза и беспорядочно толкать качели. Но если найти правильный ритм, то раскачать качели легко, однако, как только мы опять собьемся с ритма, толчки начнут тормозить качели и от такой работы будет мало проку.
Если частота ω будет в точности равна ω0, то амплитуда должна стать бесконечной, что, разумеется, невозможно. Мы ошиблись, потому что решали не совсем верное уравнение. Составляя уравнение (21.8), мы забыли о силе трения и о многих других силах. Поэтому амплитуда никогда не достигнет бесконечности; пожалуй, пружинка порвется гораздо раньше!




Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.