На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Ссылки
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Геометрия пространства-времени

Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измерениях в двух разных системах отсчета совсем не такая, как можно было ожидать на основе наших интуитивных представлений. Очень важно ясно представить себе связь пространства и времени, возникающую из преобразований Лоренца. Поэтому мы глубже рассмотрим этот вопрос.

Координаты и время (х, у, z, t), измеренные «покоящимся» наблюдателем, преобразуются в координаты и время (х`, у`, z`, t`), измеренные внутри «движущегося» со скоростью и космического корабля:

Маленькое изображение
 

Давайте сравним эти уравнения с уравнением (11.5); которое тоже связывает измерения в двух системах, только одна из них теперь вращается относительно другой

Маленькое изображение
 

В этом частном случае у Мика и Джо оси х` и х повернуты на угол θ. Но и в том и в другом случае мы замечаем, что «штрихованные» величины — это «перемешанные» между собой «нештрихованные»: новое х` есть смесь х и у, а новое у` — другая смесь х и у.

Проведем следующую аналогию: когда мы глядим на предмет, мы различаем его «видимую ширину» и «видимую толщину». Но эти два понятия — «ширина» и «толщина» — отнюдь не основные свойства предмета. Отойдите в сторону, взгляните на предмет под другим углом — видимая ширина и видимая толщина предмета станут другими. Можно написать формулы, позволяющие узнать новые ширину и толщину по известным старым и по углу поворота. Уравнения (17.2) — как раз эти формулы. Можно сказать, что данная толщина есть своего рода «смесь» всех ширин и всех толщин. Если б мы не могли сдвинуться с места, если б мы на данный предмет всегда глядели из одного и того же положения, то нам все эти рассуждения показались бы неуместными; мы ведь и так всегда видели бы пред собой «настоящую» ширину и «настоящую» толщину и знали бы, что это совершенно разные качества предмета: один связан с углом, под каким виден предмет, другой требует фокусирования глаза и даже интуиции. Они казались бы абсолютно различными, их незачем было бы смешивать. Только потому, что мы в состоянии обойти вокруг предмета, мы понимаем, что ширина и толщина — это разные стороны одного и того же предмета.

Нельзя ли взглянуть на преобразование Лоренца таким же способом! Ведь и здесь перед нами смесь — смесь местоположения и момента времени. Из значений координаты и времени получается новая координата. Иначе говоря, в измерениях пространства, сделанных одним человеком, есть с точки зрения другого малая примесь времени. Наша аналогия позволяет высказать следующую мысль: «реальность» предмета, на который мы смотрим, включает нечто большее (говоря грубо и образно), чем его «ширину» и его «толщину», потому что обе они зависят от того, как мы смотрим на предмет. Оказавшись на новом месте, наш мозг немедленно пересчитывает и ширину, и толщину. Но когда мы будем двигаться с большой скоростью, наш мозг не сможет немедленно пересчитать координаты и время: у нас нет опыта движений со скоростями, близкими к световой, мы не ощущаем время и пространство как явления одной природы. Все равно как если бы нас усадили на какое-то место, заставили бы разглядывать ширину какого-то предмета и при этом не разрешали бы даже поворачивать голову. Мы теперь понимаем, что, будь у нас такая возможность, мы могли бы увидеть немножко от времени другого человека, как бы «заглянуть» сзади него.

Маленькое изображениеИтак, мы должны попытаться представить себе предметы в мире нового типа, в котором время с пространством смешано в том же смысле, в каком предметы нашего привычного пространственного мира можно разглядывать с разных направлений. Мы должны считать, что предметы, занимающие некоторое место и существующие некоторый период времени, занимают некую «дольку» мира нового типа и что мы смотрим на эту «дольку» с разных точек зрения, когда движемся с разной скоростью. Этот новый мир, эта геометрическая реальность, в которой имеются «дольки», занимающие некоторое пространство и существующие некоторое время, называется пространством-временем. Данная точка (х, у, z, t) в пространстве-времени носит название события. Представьте, например, что ось х мы поместили горизонтально, оси у и z — в двух других направлениях, взаимно перпендикулярных и перпендикулярных к странице (!), а ось t направили вертикально. Как на такой диаграмме изобразится, скажем, движущаяся частица? Когда частица неподвижна, у нее есть какая-то координата х; время течет, а х остается все тем же, и тем же, и тем же. Значит, ее «путь» — это прямая, параллельная оси (а на фиг. 17.1). С другой стороны, если она равномерно удаляется, то с течением времени растет и х (b на фиг. 17.1). Таким образом, частица, которая сперва двигалась, а потом стала замедлять свой ход, изобразится чем-то похожим на кривую с на фиг. 17.1. Другими словами, всякая устойчивая, нераспадающаяся частица изображается линией в пространстве-времени. А распадающаяся частица изобразится вилкой, потому что она превращается в две частицы, выходящие из одной точки.

А как обстоит дело со светом? Скорость света всегда одна и та же, значит, свет можно изображать прямыми линиями одинакового наклона (d на фиг. 17.1).

Маленькое изображениеИтак, согласно высказанной нами идее, если происходит некое событие, например частица внезапно распадается в какой-то пространственно-временной точке (х, t) на две, то, если это для чего-нибудь нужно, поворотом осей можно получить значения х и t в новой системе (фиг. 17.2, а). Но это не так: ведь уравнение (17.1) не совпадает с преобразованием (17.2), в них по-разному расставлены знаки, в одном встречаются sin θ и cos θ, а в другом — некоторые алгебраические величины. (Вообще-то иногда алгебраические величины выражаются через косинус и синус, но в данном случае это невозможно.) А все-таки эти выражения очень похожи. Как мы с вами увидим, нельзя представлять себе пространство-время в виде реальной обычной геометрии, и все из-за этой разницы в знаках. На самом деле, хотя мы этого пока не подчеркивали, оказывается, что движущийся наблюдатель должен пользоваться осями, равнонаклоненными к линии светового луча, и проектировать точку на эти оси при помощи отрезков, им параллельных. Это показано на фиг. 17.2, б. Мы не будем заниматься этой геометрией, она не особенно помогает; легче работать прямо с уравнениями.




Социальные комментарии Cackle


 
 
© All-Физика, 2009-2016
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.