На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Четырехмерный градиент

Следующей величиной, которую нам следует обсудить, является четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования д/дх, д/ду, д/дz преобразуются подобно трехмерному вектору и называются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмерным градиентом должны быть (д/дt, д/дх, д/ду д/дz), но это неверно.
 
Чтобы обнаружить ошибку, рассмотрим скалярную функцию, которая зависит только от х и t. Приращение φ при малом изменении t на Δt и постоянном х равно

Маленькое изображение
 

С другой  стороны,  с точки  зрения  движущегося  наблюдателя

Маленькое изображение
 

Используя уравнение (25.1), мы можем выразить Δх′ и Δtчерез Δt. Вспоминая теперь, что величина х постоянна, так что Δх = 0, мы пишем

Маленькое изображение
 

Сравнивая этот результат с (25.13), мы узнаем, что

Маленькое изображение
 

Аналогичные вычисления дают

Маленькое изображение
 

Теперь вы видите, что градиент получился довольно странным. Выражения для х и t через х′ и t[полученные решением уравнений (25.1)] имеют вид

Маленькое изображение
 

Именно так должен   преобразовываться  четырехвектор. Но в уравнениях (25.14) и (25.15) знаки получились неправильными! Выход в том, что надо заменить неправильное определение четырехмерного оператора градиента (/∂t, v) правильным:

Маленькое изображение
 

Мы его обозначим vμ . Для такого vμ трудности исчезают, и он ведет себя так, как подобает настоящему четырехвектору. (Ужасно неприятно наличие минусов, но так уж устроено в мире.) Разумеется, говоря, что vμ «ведет себя как четырехвектор», мы подразумеваем, что четырехмерный градиент скалярной функции есть четырехвектор. Если φ — настоящее скалярное (лоренц-инвариантное) поле, то vμφ будет четырехвекторным полем.
 
Итак, все уладилось. Теперь у нас есть векторы, градиенты и скалярное произведение. Следующий на очереди — инвариант, аналогичный дивергенции в трехмерном векторном анализе. Ясно, что аналогом его должно быть выражение vμbμ , где bμ — векторное поле, компоненты которого являются функциями пространства и времени. Мы определим дивергенцию четырехвектора bμ =(bt, b) как скалярное произведение vμ  на bμ :

Маленькое изображение
 

где v·b — обычная трехмерная дивергенция вектора b. Не забывайте внимательно следить за знаками. Один знак минус связан с определением скалярного произведения [формула (25.7)], а другой возникает от пространственных компонент vμ [формула (25.16)]. Дивергенция, определяемая формулой (25.7), есть инвариант, и для всех систем координат, отличающихся друг от друга преобразованием Лоренца, применение ее приводит к одинаковой величине.
 
Остановимся теперь на физическом примере, в котором появляется четырехмерная дивергенция. Ею можно воспользоваться при решении задачи о полях вокруг движущегося проводника. Мы уже видели (гл. 13, § 7, вып. 5), что плотность электрического заряда ρ и плотность тока j образуют четырехвектор jμ=(ρ, j). Если незаряженный провод переносит ток jх, то в системе отсчета, движущейся относительно него со скоростью v (вдоль оси х), в проводнике наряду с током появится и заряд [который возникает  согласно   закону  преобразований Лоренца (25.1)]:

Маленькое изображение
 

Но это как раз то, что мы нашли в гл. 13. Теперь нужно подставить эти источники в уравнение Максвелла в движущейся системе и найти поля.
 
Закон сохранения заряда в четырехмерных обозначениях тоже принимает очень простой вид. Рассмотрим четырехмерную дивергенцию вектора jμ :

Маленькое изображение
 

Закон сохранения заряда утверждает, что утекание тока из единицы объема должно быть равно отрицательной скорости увеличения плотности заряда. Иными словами,

Маленькое изображение
 

Подставляя это в (25.18), получаем очень простую форму закона сохранения заряда:

Маленькое изображение
 

Благодаря тому что vμjμ— инвариант, равенство его нулю в одной системе отсчета означает равенство нулю и во всех других. Таким образом, если заряд сохраняется в одной системе, он будет сохраняться и во всех других системах координат, движущихся относительно нее с постоянной скоростью.
 
В качестве последнего примера рассмотрим скалярное произведение оператора градиента vμ на себя. В трехмерном пространстве такое произведение дает лапласиан

Маленькое изображение
 

Что получится для четырех измерений? Вычислить это очень просто. Следуя нашему правилу скалярного произведения, находим

Маленькое изображение
 

Этот оператор, представляющий аналог трехмерного лапласиана, называется даламбертианом и обозначается специальным символом

Маленькое изображение
 

По построению он является скалярным оператором, т. е., если подействовать им, скажем, на четырехвекторное поле, возникает новое четырехвекторное поле. [Иногда даламбертиан определяется с противоположным по отношению к (25.20) знаком, так что при чтении литературы будьте внимательны!]
 
Итак, для большинства величин, перечисленных нами в табл. 25.1, мы нашли их четырехмерные эквиваленты. (У нас еще нет эквивалента векторного произведения, но его нахождение мы оставим до следующей главы.) А теперь соберем в одно место все важнейшие результаты и определения и составим еще одну таблицу (табл. 25.2); она поможет вам лучше запомнить, что во что переходит.

Маленькое изображение
 



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.