На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Потенциалы заряда, движущегося с постоянной скоростью. Формула Лоренца

Маленькое изображениеПрименим теперь потенциалы Льенара — Вихерта к случаю заряда, движущегося по прямой с постоянной скоростью, и вычислим поле этого заряда. Позже мы повторим этот вывод, используя уже принцип относительности. Мы знаем величину потенциалов в той системе, в которой заряд покоится. Когда заряд движется, то все получается простым релятивистским преобразованием от одной системы к другой. Но теория относительности ведет свое начало от теории электричества и магнетизма. Формулы преобразований Лоренца [см. гл. 15 (вып. 2)] — это открытия, сделанные Лоренцем при исследовании уравнений электричества и магнетизма. И для того чтобы вы понимали, откуда все пошло, я хочу показать вам, что уравнения Максвелла действительно приводят к преобразованиям Лоренца. Я начну с вычисления потенциала равномерно движущегося заряда прямо из электродинамики, из уравнений Максвелла. Мы уже показали, что уравнения Максвелла приводят к потенциалу, полученному в предыдущем параграфе. Стало быть, пользуясь этими потенциалами, мы используем тем самым теорию Максвелла.
 
Пусть имеется заряд, движущийся вдоль оси х со скоростью v (фиг. 21.8). Нас интересуют потенциалы в точке Р(х, у, z). Если t=0 — момент, в который заряд проходит через начало координат, то в момент t заряд окажется в точке x=vt, y=z=0. А нам нужно знать его положение с учетом запаздывания, т. е. положение в момент

Маленькое изображение
 

где r′—расстояние от заряда до точки Р в этот запаздывающий момент. В это более раннее время tзаряд был в x = vt′ так что

Маленькое изображение
 

Чтобы найти r′ или t′, это уравнение надо сопоставить с (21.35). Исключим сперва r′, решив (21.35) относительно r′ и подставив в (21.36). Возвысив затем обе части в квадрат, получим

Маленькое изображение
 

т. е. квадратное уравнение относительно t′. Раскрыв скобки и расположив члены по степеням t′, получим

Маленькое изображение
 

Отсюда найдем

Маленькое изображение
 

Чтобы получить r′, надо это t′ подставить в

Маленькое изображение
 

Теперь  мы  уже можем найти φ  из выражения (21.33), имеющего вид

Маленькое изображение
 

(ввиду того, что v постоянно).
 
Составляющая v в направлении r′ равна v(x vt′)/r′, так что   v·r просто   равно v(xvt′), а весь знаменатель равен

Маленькое изображение
 

Подставляя (1—v2/c2)t′ из (21.37), получаем

Маленькое изображение
 

Это уравнение становится более понятным, если переписать его в виде

Маленькое изображение
 

Векторный потенциал А — это такое же выражение, но с добавочным множителем v/c2:

Маленькое изображение
 

В выражении (21.39) со всей ясностью предстает перед вами начало преобразований Лоренца. Если бы заряд находился в начале координат в своей собственной системе покоя, то его потенциал имел бы вид

Маленькое изображение
 

А мы смотрим на него из движущейся системы координат, и нам кажется, что координаты следует преобразовать с помощью Формул

Маленькое изображение
 

Это обычное преобразование Лоренца. Лоренц вывел его тем же самым способом, каким пользовались и мы.
 
Но что можно сказать о добавочном множителе 1/√1–v22, который появился перед дробью в (21.39)? И кроме того, как появляется векторный потенциал А, если он в системе покоя частицы повсюду равен нулю? Мы вскоре покажем, что А и φ вместе составляют четырехвектор, подобно импульсу р и полной энергии U частицы. Добавка 1/√1–v22 в (21.39)—это тот самый множитель, который появляется всегда, когда преобразуют компоненты четырехвектора, так же как плотность заряда ρ преобразуется в ρ/√1–v22. Собственно из формул (21.4) и (21.5) почти очевидно, что А и φ суть компоненты одного четырехвектора, потому что в гл. 13 (вып. 5) уже было показано, что j и ρ — компоненты четырехвектора.
 
Позднее мы более подробно разберем относительность в электродинамике; здесь мы хотели только показать, как естественно уравнения Максвелла приводят к преобразованиям Лоренца. Поэтому не надо удивляться, узнав, что законы электричества и магнетизма уже вполне пригодны и для теории относительности Эйнштейна. Их не нужно даже как-то особо подгонять, как это приходилось делать с ньютоновой механикой.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.