На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Общее решение уравнений Максвелла

Мы нашли решение уравнения (21.7) для «точечного» источника. Теперь встает новый вопрос: Каков вид решения для рассредоточенного источника? Ну, это решить легко; всякий источник s(x, у, z, t) можно считать состоящим из суммы многих «точечных» источников, расположенных поодиночке в каждом элементе объема dV и имеющих силу s(x, у, z, t)dV. Поскольку (21.7) линейно, суммарное поле представляет собой суперпозицию полей от всех таких элементов источника.
 
Используя результаты предыдущего параграфа [см. (21.13)], мы получим, что в момент t поле dψ в точке (x1, y1, z1) [или, короче, в точке (1)], создаваемое элементом источника sdV в точке (х2, у2. z2) [или, короче, в точке (2)], выражается формулой

Маленькое изображение
 

где r12 — расстояние от (2) до (1). Сложение вкладов от всех частей источника означает, конечно, интегрирование по всей области, где s≠0, так что мы имеем

Маленькое изображение
 

Иначе говоря, поле в точке (1) в момент времени t представляет собой сумму всех сферических волн, испускаемых в момент tr12 /c всеми элементами источника, расположенного в точке (2). Выражение (21.14) является решением нашего волнового уравнения для любой системы источников.
 
Теперь мы видим, как получать общее решение уравнений Максвелла. Если подразумевать под ψ скалярный потенциал φ, то функция источника s превращается в ρ/ ε0. А можно считать, что ψ представляет одну из трех компонент векторного потенциала А; тогда s означает соответствующую компоненту j/ε0c2. Стало быть, если во всех точках известна плотность зарядов ρ(х, у, z, t) и плотность тока j(х, у, z, t), то решения уравнений (21.4) и (21.5) можно выписать немедленно:

Маленькое изображение
 

Поля Е и В получатся дифференцированием потенциалов [используются выражения (21.2) и (21.3)]. Кстати, можно проверить явно, что φ и А, полученные из (21.15) и (21.16), действительно удовлетворяют равенству (21.6).
 
Мы решили уравнения Максвелла. В любых обстоятельствах, если только заданы токи и заряды, из этих интегралов можно определить потенциалы, а затем, продифференцировав их, получить поля. Тем самым с теорией Максвелла покончено. И это позволяет нам также замкнуть круг и вернуться к нашей теории света, потому что достаточно только подсчитать электрическое поле движущегося заряда, чтобы связать все это с нашей прежней теорией света. Все, что нам остается сделать,— это взять движущийся заряд, вычислить из этих интегралов его потенциал и затем из —vφ—∂A/∂t, дифференцируя, найти Е. Мы должны получить формулу (21.1). Работы придется проделать много, но принцип ясен.
 
Итак, мы дошли до центра электромагнитной вселенной. У нас в руках полная теория электричества, магнетизма и света, полное описание полей, создаваемых движущимися зарядами, и многое, многое другое. Все сооружение, воздвигнутое Максвеллом, во всей его полноте, красе и мощи сейчас перед нами. Это, пожалуй, одно из величайших свершений физики.И чтобы напомнить о его важности, мы переписываем все формулы вместе и обводим их красивой рамкой.

Маленькое изображение
 



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.


-->