На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Дипольный потенциал как градиент

Мы хотели бы теперь отметить любопытное свойство формулы диполя (6.13). Потенциал можно записать также в виде

Маленькое изображение
 

Действительно, вычислив градиент 1/r, вы получите

Маленькое изображение
 

и (6.16) совпадет с (6.13).
 
Как мы догадались об этом? Мы просто вспомнили, что er /r2 уже появлялось в формуле для поля точечного заряда и что поле — это   градиент потенциала, изменяющегося как 1/r.
 
Существует и физическая причина того, что дипольный потенциал может быть записан в форме (6.16). Пусть в начало координат помещен точечный заряд q. Потенциал в точке Р(х, у, z) равен

Маленькое изображение
 

Маленькое изображение(Множитель 1/4πε0 опустим, а в конце мы его можем снова вставить.) Если заряд +q мы сдвинем на расстояние Δz, то потенциал в точке Р чуть изменится, скажем на Δφ+. На сколько же именно? Как раз на столько, на сколько изменился бы потенциал, если б заряд оставили в покое, а Р сместили на столько же вниз (фиг. 6.5). Иначе говоря,

Маленькое изображение
 

где Δz означает то же, что и d/2. Беря φ0= q/r, мы получаем для потенциала положительного заряда

Маленькое изображение
 

Повторяя те же рассуждения с потенциалом отрицательного заряда, можно написать

Маленькое изображение
 

А общий потенциал—просто сумма (6.17) и (6.18):

Маленькое изображение
 

При других расположениях диполя смещение положительного заряда можно изобразить вектором Δr+, а уравнение (6.17) представить в виде

Маленькое изображение
 

где Δr впоследствии надо будет заменить на d/2. Завершая доказательство так, как это было сделано выше, мы приведем уравнение (6.19) к виду

Маленькое изображение
 

Это то же уравнение, что и (6.16). Надо только заменить qd на р и вставить потерянный по дороге множитель 1/4πε0. Взглянув на это уравнение по-иному, видим, что дипольный потенциал (6.13) можно толковать как

Маленькое изображение
 

где   Фо=1/4πε0r — потенциал   единичного   точечного   заряда.
 
Хотя потенциал данного распределения зарядов всегда может быть найден при помощи интегрирования, иногда можно сберечь время, применив какой-нибудь хитроумный прием. Например, на помощь часто приходит принцип наложения. Если нам дано распределение зарядов, которое можно составить из двух распределений с уже известными потенциалами, то искомый потенциал легко получить, просто сложив уже известные между собой. Наш вывод формулы (6.20) — один из примеров применения этого приема.

Маленькое изображениеА вот и другой. Пусть имеется сферическая поверхность, на которой поверхностный заряд распределен пропорционально косинусу полярного угла. Интегрировать такое распределение— задача, откровенно говоря, не из приятных. Но как ни странно, на помощь приходит принцип наложения. Представьте себе шар с однородной объемной плотностью положительных зарядов и другой шар с такой же однородной объемной плотностью зарядов, но противоположного знака. Первоначально они вложены друг в друга, образуя нейтральный, т. е. незаряженный шар. Если затем положительный шар чуть сместить по отношению к отрицательному, то нутро незаряженного шара так и останется незаряженным, но на одной стороне возникнет небольшой положительный заряд, а на противоположной — такой же отрицательный (фиг. 6.6). И если относительное смещение двух шаров мало, то эти заряды эквивалентны существованию поверхностного заряда (на сферической поверхности) с плотностью, пропорциональной косинусу полярного угла.

Когда же нам понадобится потенциал этого распределения, то брать интегралы не нужно. Мы знаем, что потенциал каждого заряженного шара — в точках вне его — совпадает с потенциалом точечного заряда. А два смещенных шара — все равно, что два точечных заряда; значит, искомый потенциал и есть как раз потенциал диполя.
 
Таким путем можно показать, что распределение зарядов на сфере радиуса а с поверхностной плотностью

Маленькое изображение
 

такое же поле, как и диполь с моментом

Маленькое изображение
 

Можно также показать, что внутри сферы поле постоянно и равно

Маленькое изображение
 

Если θ — угол с положительной осью z, то электрическое поле внутри сферы направлено по отрицательной оси z. Рассмотренный нами пример отнюдь не досужая выдумка составителя задач; он нам встретится еще в теории диэлектриков.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.