На главную
Физика - одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке. Данный ресурс поможет эффективно и интересно изучать физику. Учите физику!
   

Обучение и материалы
Физический справочник
Формулы по физике
Шпаргалки по физике
Энциклопедия
Репетиторы по физике
Работа для физиков
Быстрый устный счет
Виртуальные лабораторные
Опыты по физике
ЕГЭ онлайн
Онлайн тестирование
Ученые физики
Необъяснимые явления
Ваша реклама на сайте
Разное
Контакты
Спецкурс
Фейнмановские лекции

В мире больших скоростей

Введение в теорию относительности

Лекции по биофизике
Лекции по ядерной физике
Ускорение времени...
Лазеры
Нанотехнологии
Книги
полезное
Смешные анекдоты о физике
Готовые шпоры по физике
Физика в жизни
Ученые и деньги
Нобелевские лауреаты
Фото
Видео
Карта сайта
На заметку
Если вам понравился сайт, предлагаем разместить нашу кнопку
Кнопка сайта All-fizika.com
Дополнительно
Компьютерные программы
по физике
Программы по физике


Физика и юмор
Физика и юмор


Онлайн тестирование
по физике
Онлайн тестирование по физике



-









Независимые частицы

В предыдущем параграфе мы написали гамильтониан (13.15) для двухчастичной системы. Затем, пользуясь приближением, эквивалентным пренебрежению каким-либо «взаимодействием» между двумя частицами, мы нашли стационарные состояния, описываемые формулами (13.17) и (13.18). Это состояние попросту есть произведение двух одночастичных состояний. Но решение, которое мы написали для ат,n [формула (13.18)], на самом деле удовлетворить нас не может. Мы с самого начала подчеркивали, что состояние | х9, x4> не отличается от состояния |x4, x9>,что порядок хт и хn неважен. Вообще говоря, алгебраическое выражение для амплитуды Ст,п не должно меняться от перестановки значений хт и хn, потому что она не изменяет состояния. В любом случае она будет представлять амплитуду того, что спин, направленный вниз, обнаружится в хт и в хn. Но обратите внимание, что (13.18) несимметрично по хт и хn, поскольку k1 и k2, вообще говоря, различны.
 
Все дело в том, что мы не заставили наше решение (13.15) подчиниться этому добавочному условию. К счастью, пока нетрудно все исправить. Заметьте, во-первых, что ничуть не хуже формулы (13.18) другое решение уравнения Гамильтона:

Маленькое изображение
 

И даже энергия здесь та же самая, что была в (13.18). Значит, любая линейная комбинация (13.18) и (13.23) также будет решением системы и будет обладать по-прежнему энергией, даваемой (13.19). Решение, которое нужно выбрать по требованиям симметрии,— просто сумма (13.18) и (13.23):

Маленькое изображение
 

Теперь при данных k1 и к2 амплитуда Сm,n не зависит от того, в каком порядке мы берем хт и хn; если мы случайно поставим хт и хn в обратном порядке, мы получим ту же амплитуду. И наше толкование уравнения (13.24) на языке «магнонов» тоже станет иным. Уже нельзя говорить, что уравнение представляет одну частицу с волновым числом k1 и другую частицу с волновым числом k2. Амплитуда (13.24) представляет одно состояние с двумя частицами (магнонами). Состояние характеризуется двумя волновыми числами k1 и k2. Наше решение выглядит как составное состояние одной частицы с импульсом р1 = k1/h и другой частицы с импульсом р2 = k2/h, но в этом состоянии нельзя сказать, где какая частица.
 
В этот момент полезно вспомнить гл. 2 (вып. 8) и наш рассказ о тождественных частицах. Мы просто только что показали, что частицы спиновых волн (магноны) ведут себя как тождественные бозе-частицы. Все амплитуды обязаны быть симметричны по координатам двух частиц; это все равно, что сказать, что после «обмена двумя частицами» мы снова получим ту же амплитуду с тем же знаком. Но вы можете подумать: «Почему же мы все-таки решили в (13.24) сложить два члена? Почему не вычесть?» Ведь при знаке минус обмен хт и хn просто изменил бы знак ат,n, а это не в счет, это не имеет значения. Но ведь обмен хт с хn ничего не меняет — все электроны кристалла останутся там же, где и были, так что даже для перемены знака нет, казалось бы, никакого повода. Но это, конечно, плохой аргумент.
 
Наше обсуждение имело двойную цель: во-первых, рассказать вам кое-что о спиновых волнах; во-вторых, продемонстрировать состояние, амплитуда которого равна произведению двух амплитуд, а энергия равна сумме энергий, отвечающих этим амплитудам. Для независимых частиц амплитуда получается умножением, а энергия — сложением. Почему сложением — легко понять. Энергия — это коэффициент при t в мнимом показателе экспоненты; она пропорциональна частоте. Если пара объектов что-то совершает, один с амплитудой eiE2t/h, а другой с амплитудой eiE1t/h , и если амплитуда того, что обе эти вещи произойдут вместе, является произведением отдельных амплитуд, то в произведении появится единственная частота, равная сумме двух частот. Энергия, отвечающая произведению амплитуд, есть сумма обеих энергий.
 
Нам понадобилось довольно долго говорить, чтобы сообщить очень простую вещь: когда вы не учитываете взаимодействия между частицами, вы вправе рассматривать каждую частицу независимо. Они могут отдельно существовать во всевозможных состояниях, в которых они пребывали бы и порознь, и давать тот же вклад в энергию, какой давали бы порознь. Однако следует помнить, что если частицы тождественны, то они могут вести себя как бозе- или ферми-частицы в зависимости от задачи. Например, пара электронов, добавленная к Кристаллу, ведет себя как ферми-частицы. Обмен местоположениями двух электронов приводит к перемене знака амплитуды. В уравнении, соответствующем (13.24), между двумя слагаемыми стоит знак минус. Как следствие этого: две ферми-частицы не могут пребывать в точности в одних и тех же условиях — с одинаковыми спинами и одинаковыми k. Амплитуда такого состояния нуль.



СМОТРИТЕ ТАКЖЕ:


Социальные комментарии Cackle


 
 
© All-Физика, 2009-2024
При использовании материалов сайта ссылка на www.all-fizika.com обязательна.