Главная >> Фейнмановские лекции по физике >> Том 7 >> Глава 39. Упругие материалы Тензор упругости
Теперь, чтобы описать деформации, мы должны связать их с внутренними силами — с напряжениями в материале. Мы предполагаем, что закон Гука справедлив для любого кусочка материала, т. е. что напряжения всюду пропорциональны деформациям. В гл. 31 мы определили тензор напряжений S¡j как i-ю компоненту силы, действующей на единичной площадке, перпендикулярной оси j. Закон Гука говорит, что каждая компонента S¡j линейно связана с каждой компонентой напряжения. Но поскольку S и I содержат по девяти компонент, то всего для описания упругих свойств материала требуется 9 X 9 = 81 возможный коэффициент. Если материал однороден, то все эти коэффициенты будут постоянными. Мы обозначим их Cijkl, определив посредством уравнения
 |
где каждый значок i, j, k и I может принимать значения 1, 2 или 3. Поскольку коэффициенты C¡jkl связывают один тензор с другим, они тоже образуют тензор — на этот раз тензор четвертого ранга. Мы можем назвать его тензором упругости.
Предположим, что все C¡jkl известны и что к телу какой-то произвольной формы мы приложили сложные силы. При этом возникнут все сорта деформаций — тело как-то исказится. Каковы будут перемещения? Вы понимаете, что это довольно сложная задача. Если вам известны деформации, то из уравнения (39.12) можно найти напряжения, и наоборот. Но напряжения и деформации, которые возникли в любой точке, зависят от того, что происходит во всей остальной части материала.
Наиболее простой способ подступиться к такой задаче — это подумать об энергии. Когда сила F пропорциональна перемещению х, скажем F = kx, то работа, затраченная на любое перемещение х, равна kх2/2. Подобным же образом энергия w, запасенная в любой единице объема деформированного материала, оказывается равной
 |
Полная же работа W, затраченная на деформацию всего тела, будет интегралом от w по всему его объему:
 |
Следовательно, это и есть потенциальная энергия, запасенная во внутренних напряжениях материала. Когда тело находится в равновесии, эта внутренняя энергия должна быть минимальной. Таким образом, проблема определения деформаций в теле может быть решена нахождением таких перемещений и по всему телу, при которых W минимальна. В гл. 19 (вып. 6) я говорил вам о некоторых общих идеях вариационного исчисления, применяемого при решении задач на минимизацию подобного рода. Однако сейчас мы больше не будем вдаваться в подробности этой задачи.
Сейчас нас главным образом будет интересовать то, что можно сказать относительно общих свойств тензора упругости. Прежде всего ясно, что на самом деле в Cijkl содержится не 81 различный параметр. Поскольку S¡j и e¡j — симметричные тензоры, каждый из которых включает только шесть различных элементов, то Cijkl состоит максимум из 36 различных компонент. Обычно же их гораздо меньше.
Рассмотрим специальный случай кубического кристалла. Плотность энергии w для него получается такой:
 |
т. е. всего 81 слагаемое! Но кубический кристалл обладает определенными симметриями. В частности, если кристалл повернуть на 90°, то все его физические свойства останутся теми же. Например, у него должна быть одна и та же жесткость относительно растяжения как в направлении оси у, так и в направлении оси х. Следовательно, если мы переменим наши определения осей координат х и у в уравнении (39.15), то энергия не должна измениться. Поэтому для кубического кристалла
 |
Мы можем еще показать, что компоненты, наподобие Сххху, должны быть нулями. Кубический кристалл обладает тем свойством, что он симметричен при отражении относительно любой плоскости, перпендикулярной к одной из осей координат. Если мы заменим у на –у, то ничего не должно измениться. Но изменение у на –у меняет еxy на –еху, так как перемещение в направлении +у будет теперь перемещением в направлении –у. Чтобы энергия при этом не менялась, Сххху должно переходить в —Сххху. Но отраженный кристалл будет тем же, что и прежде, поэтому Сххху должно быть таким же, как и –Сххху . Это может произойти только тогда, когда оба они равны нулю.
Но вы можете сказать: «Рассуждая таким же образом, можно сделать и Суууу = 0! Это неверно. Ведь здесь у нас четыре игрека. Каждый у изменяет знак, а четыре минуса дают плюс. Если у встречается два или четыре раза, то такие компоненты не должны быть равны нулю. Нулю равны только те компоненты, у которых у встречается либо один, либо три раза. Таким образом, для кубического кристалла не равны нулю только те С, у которых один и тот же значок встречается четное число раз. (Рассуждения, которые мы провели для у, имеют силу и для х и для z.) Таким образом, выживают только компоненты типа Сххуу, Схуху, Схуух и т. д. Однако мы уже показали, что если изменить все х на у и наоборот (или все z на x и т. д.), то для кубического кристалла мы должны получить то же самое число. Это означает, что остаются всего три различные ненулевые возможности:
 |
Плотность же энергии для кубического кристалла выглядит так:
У изотропного, т. е. некристаллического, материала симметрия еще выше. Числа С должны быть теми же самыми при любом выборе осей координат. При этом, как оказывается, существует другая связь между коэффициентами С:
 |
Это можно усмотреть из следующих общих рассуждений. Тензор напряжений S¡j должен быть связан с е¡j способом, который совершенно не зависит от направления осей координат, т. е. он должен быть связан только с помощью скалярных величин. «Это очень просто»,— скажете вы. «Единственный способ получить S¡j из e¡j— умножить последнее на скалярную постоянную. Получится как раз закон Гука: S¡j = (Постоянная) х е¡j». Однако это не совсем верно. Дополнительно здесь можно вставить единичный тензор δ¡j, умноженный на некоторый скаляр, линейно связанный с e¡j. Единственный инвариант, который можно составить и который линеен по е, — это ∑e¡j. (Он преобразуется подобно х2 + у2 + z2, а значит является скаляром.) Таким образом, наиболее общей формой уравнения, связывающего S¡j с е¡j для изотропного материала, будет
 |
(Первая константа обычно записывается как 2 μ; при этом коэффициент μ, равен модулю сдвига, определенному нами в предыдущей главе.) Постоянные μ и λ называются упругими постоянными Лямэ. Сравнивая уравнения (39.20) с уравнением (39.12), вы видите, что
Таким образом, мы доказали, что уравнение (39.19) действительно правильное. Вы видите также, что упругие свойства изотропного материала, как уже говорилось в предыдущей главе, полностью задаются двумя постоянными.
Коэффициенты С могут быть выражены через любые две из упругих постоянных, которые использовались ранее, например через модуль Юнга Y и отношение Пуассона σ. На вашу долю оставляю показать, что
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|