Главная >> Фейнмановские лекции по физике >> Том 7 >> Глава 32. Показатель преломления плотного вещества Низкочастотное и высокочастотное приближения. Глубина скин-слоя и плазменная частота
Наш результат для показателя преломления в металлах — формула (32.42) — предсказывает для распространения волн с разными частотами совершенно различные характеристики. Прежде всего давайте посмотрим, что получается при низких частотах. Если величина ω достаточно мала, то (32.42) можно приближенно записать в виде
Возведением в квадрат можно проверить, что
Вещественная и мнимая части n имеют одну и ту же величину. С такой большой мнимой частью n волны в металлах затухают очень быстро. В соответствии с выражением (32.36) амплитуда волны, идущей в направлении оси z, уменьшается как
где δ — это то расстояние, на котором амплитуда волны уменьшается в е=2,72 раза, т. е. приблизительно в 3 раза. Амплитуда такой волны, как функция от z, показана на фиг. 32.3. Поскольку электромагнитные волны проникают в глубь металла только на это расстояние, величина δ называется глубиной скин-слоя и определяется выражением
Но что все-таки мы понимаем под «низкими» частотами? Взглянув на уравнение (32.42), мы видим, что его можно приближенно заменить уравнением (32.44), только когда ωτ много меньше единицы и когда (ωε0/σ также много меньше единицы, т. е. наше низкочастотное приближение применимо при
Давайте посмотрим, какие частоты соответствуют этому приближению для такого типичного металла, как медь. Для вычисления т воспользуемся уравнением (32.43), а для вычисления σ/ε0 — известными значениями σ и ε0. Справочник дает нам такие данные:
Если мы предположим, что на каждый атом приходится по одному свободному электрону, то число электронов в кубическом метре будет равно
Таким образом, для частот, меньших чем приблизительно 1012 гц, медь будет иметь описанное нами «низкочастотное» поведение. (Это будут волны с длиной, большей 0,3 мм, т. е. очень короткие радиоволны!)
Для таких волн глубина скин-слоя равна
Для микроволн с частотой 10 000 Мгц (3-сантиметровые волны)
т. е. волны проникают на очень малое расстояние.
Теперь вы видите, почему при изучении полостей (и волноводов) нам нужно беспокоиться только о полях внутри полости, а не о волнах в металле или вне полости. Кроме того, мы видим, почему серебрение или волочение полости уменьшает потери в ней. Ведь потери происходят благодаря токам, которые ощутимы только в тонком слое, равном глубине скин-слоя.
Рассмотрим теперь показатель преломления в металле типа меди при высоких частотах. Для очень высоких частот ωт много больше единицы, и уравнение (32.42) очень хорошо аппроксимируется следующим:
Для высокочастотных волн показатель преломления в металлах становится чисто вещественным и меньшим единицы! Это следует также из выражения (32.38), если пренебречь диссипативным членом с γ, что может быть сделано при очень больших значениях ω. Выражение (32.38) дает при этом
что, разумеется, эквивалентно уравнению (32.50). Раньше нам уже встречалась величина (Nqe2/ε0m)1/2, которую мы назвали плазменной частотой (см. гл. 7, § 3, вып. 5):
Таким образом, (32.50) или (32.51) можно переписать в виде
Эта плазменная частота является своего рода «критической».
Для ω<ωр показатель преломления металла имеет мнимую часть и происходит поглощение волн, но при ω»ωр показатель становится вещественным, а металл — прозрачным. Вы знаете, конечно, что металлы в достаточной мере прозрачны для рентгеновских лучей. Но некоторые металлы прозрачны даже для ультрафиолета. В табл. 32.3 мы приводим для некоторых металлов экспериментально наблюдаемые длины волн, при которых эти металлы начинают становиться прозрачными. Во второй колонке дана вычисленная критическая длина волны λр=2πс/ωр. Учитывая, что экспериментальная длина волны определена не очень хорошо, согласие с теорией следует признать замечательным.
 |
Вас может удивить, почему плазменная частота ωр должна иметь отношение к распространению волн в металлах. Плазменная частота появилась у нас в гл. 7 (вып. 5) как собственная частота колебаний плотности свободных электронов. (Электрическое расталкивание группы электронов и их инерция приводят к колебаниям плотности.) Продольные волны плазмы резонируют при частоте ωр. Но сейчас мы говорим о поперечных волнах, и мы уже нашли, что при частотах, меньших ωр, происходит их поглощение. (Это очень интересное и отнюдь не случайное совпадение.)
Хотя мы все время говорили о распространении волн в металлах, вы одновременно, должно быть, почувствовали универсальность явлений физики: нет никакой разницы в том, находятся ли свободные электроны в металле, в плазме, в ионосфере Земли или в атмосфере звезд. Чтобы понять распространение радиоволн в ионосфере, можно воспользоваться тем же выражением, разумеется, при надлежащих значениях величин N и τ. Теперь мы можем видеть, почему длинные радиоволны поглощаются или отражаются ионосферой, тогда как короткие свободно проходят через нее. (Поэтому для связи с искусственными спутниками Земли должны применяться короткие волны.)
Мы говорили о распространении предельных высоко- и низкочастотных волн в металлах. Для промежуточных же частот необходимо использовать «полновесное» уравнение (32.42). В общем случае показатель преломления будет иметь вещественную и мнимую части, и при распространении волн в металлах происходит их поглощение. Очень тонкие слои металла прозрачны даже для обычных оптических частот. В качестве примера приведем специальные защитные очки для рабочих, работающих около высокотемпературных печей. Эти очки изготавливаются напылением на стекло очень тонкого слоя золота; стекло это достаточно прозрачно для видимого света и на просвет выглядит как зеленое, но инфракрасные лучи сильно поглощает.
И, наконец, от читателя невозможно скрыть тот факт, что многие из этих формул в некотором отношении напоминают формулы для диэлектрической проницаемости х, рассмотренные в гл. 10 (вып. 5). Диэлектрической проницаемостью х измеряется реакция материала на статическое электрическое поле, т. е. когда ω = 0. Если вы посмотрите повнимательнее на определение n и x, то обнаружите, что х есть не что иное, как предел n2 при ω→0. В самом деле, положив в уравнениях этой главы ω =0 и n2 = x, мы воспроизведем уравнения теории диэлектрической проницаемости гл. 11 (вып. 5).
СМОТРИТЕ ТАКЖЕ:
Социальные комментарии Cackle
|